首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The effects of rice husk powder (RHP) loading and two types of natural rubber matrix (SMR L and ENR 50) on curing characteristics and mechanical properties were studied. The scorch time and cure time decreased with increasing RHP loading whereas maximum torque showed an increasing trend. SMR L composites possessed longer scorch time and cure time than ENR 50 composites. Incorporation of RHP into both rubbers improved tensile modulus significantly but decreased tensile strength and elongation at break. SMR L composites exhibited the lower tensile modulus and higher tensile strength and elongation at break than ENR 50 composites.  相似文献   

2.
The effect of various halloysite nanotubes (HNTs) loading on fatigue life, stress–strain behavior, and hysteresis of HNTs/Standard Malaysian Rubber (SMR) L and HNTs/epoxidized natural rubber (ENR) 50 nanocomposites were studied. The addition of HNTs caused decrement in fatigue life for both nanocomposites at any extension ratio. Generally, HNTs/SMR L nanocomposites showed higher fatigue life than ENR 50 nanocomposites. Addition of more HNTs caused decrement of stress for HNTs/SMR L nanocomposites, whereas HNTs/ENR 50 nanocomposites showed vice versa at any strain. This result was supported by the graph of accumulated strain energy against extension ratio. Hysteresis values increased with addition of HNTs in both nanocomposites where of HNTs/ENR 50 nanocomposites exhibited higher hysteresis than HNTs/SMR L nanocomposites at any HNTs loading. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
The effect of filler loading and epoxidation on curing characteristics, dynamic properties, tensile properties, morphology, and rubber-filler interactions of paper-sludge-filled natural rubber compounds have been studied. Two different types of natural rubber, SMR L and ENR 50, having 0% and 50% of epoxidation and conventional vulcanization were used. Paper sludge was used as a filler and the loading range was from 0 to 40 phr. Compounding was carried out using a laboratory-sized two-roll mill. The scorch time for both rubber compounds decreased with filler loading. The cure time was found to decrease with increasing filler content for SMR L vulcanizates, whereas for ENR 50, the cure time seemed to be independent of the filler loading. Dynamic properties, i.e., maximum elastic torque, viscous torque, and tan delta, increase with filler loading in both grades of natural rubber. Results also indicate that both rubbers show increment in tensile modulus but inverse trend for elongation at break and tensile strength. However, for a fixed filler loading, ENR 50 compounds consistently exhibit higher maximum torque, modulus at 100% elongation, and modulus at 300% elongation, but lower elongation at break than SMR L compounds. In the case of tensile strength, ENR 50 possesses higher tensile strength than SMR L at 10 to 20 phr, but the difference is quite small at 30 and 40 phr. These findings might be associated with better rubber-filler interaction between the polar hydroxyl group of cellulose fiber and the epoxy group of ENR 50.  相似文献   

4.
Halloysite nanotubes (HNTs)-filled natural rubber (NR) nanocomposites with various filler loading were prepared by using a two-roll mill. The addition of HNTs increased the scorch time, cure time and maximum torque but reduced curing rate index. The tensile strength increased up to 20 phr of HNTs and then decreased. When HNTs loading increased, the elongations of break, swelling percentage and fatigue life were decreased while modulus at 100% and 300% elongation and thermal properties showed inversely. The dispersion of HNTs inside the NR matrix is shown from SEM images.  相似文献   

5.
The effects of palm oil fatty acid concentration (0, 1, 3, 5, 7 phr) and epoxidation on curing characteristics, reversion and fatigue life of carbon black filled natural rubber compounds have been studied. Three different types of natural rubber, SMR L, ENR 25 and ENR 50 having 0, 25 and 50 mol% of epoxidation and conventional sulphur vulcanization were used. The cure time t90, scorch time t2, MHRML (maximum torque − minimum torque) and fatigue life of all rubbers were found to increase with increasing palm oil fatty acid concentration. However, the reversion of all rubbers decreases with increasing palm oil fatty acid concentration. At similar concentrations of palm oil fatty acid, ENR 50 compounds exhibit the shortest scorch and cure times followed by ENR 25 and SMR L compounds. For reversion, SMR L compounds show the lowest value followed by ENR 50 and ENR 25 compounds, whereas for fatigue life, the highest value is obtained with ENR 50 compounds followed by ENR 25 and SMR L compounds. © 1999 Society of Chemical Industry  相似文献   

6.
The effect of filler loading on the cure time (t90) and swelling behaviour of SMR L/ENR 25 and SMR L/SBR blends has been studied. Carbon black (N330), silica (Vulcasil C) and calcium carbonate were used as fillers and the loading range was from 0 to 40 phr. Results show that for SMR L/ENR 25 blends the cure time decreases with increasing carbon black loading, whereas silica shows an increasing trend, and calcium carbonate does not show significant changes. For SMR L/SBR blends, the cure time of carbon black, silica and calcium carbonate generally decreases with increasing filler loading. The percentage swelling in toluene and ASTM oil no 3 decreases for both blends with increasing filler loading, with calcium carbonate giving the highest value, followed by silica‐ and carbon black‐filled blends. At a fixed filler loading, SMR L/ENR 25 blend shows a lower percentage swelling than SMR L/SBR blends. © 2003 Society of Chemical Industry  相似文献   

7.
The properties of hybrid multiwall carbon nanotube (MWCNT) and carbon black (CB) in natural rubber nanocomposites were studied. The results show that the scorch and cure time decreased as the MWCNT loading increased in CB/MWCNT hybrid loading ratio but for the maximum torque, the result shown otherwise. As the MWCNT loading increased in CB/MWCNT hybrid loading ratio, the tensile strength, elongation at break and fatigue life are decrease, however the tensile modulus and rubber filler-interaction (Qf/Qg) value increased. The SEM results show a dispersion of CB and MWCNT in natural rubber matrix. Furthermore, the thermal stability for the hybrid nanocomposites is enhanced.  相似文献   

8.
The Mooney scorch times of three rubber blends [epoxidized natural rubber (ENR) 50/SMR L, ENR 50/styrene butadiene rubber (SBR), and Standard Malaysian Rubber SMR L/SBR] were studied in the temperature range of 120–160°C using an automatic Mooney viscometer. N-Cyclohexyl-2-benzothiazyl sulfenamide was used as the accelerator, and the rubber formulation was based on the conventional vulcanization system. Results for the blends investigated indicate that a negative deviation of scorch time from the interpolated value was observed, especially for temperatures lower than 130°C. This observation was attributed to the induction effect of the ENR 50 in the ENR 50/SMR L and ENR 50/SBR blends to produce more activated precursors to crosslinks, thus enhancing interphase crosslinking. To a lesser extent, SMR L also exhibited such an induction effect in the SMR L/SBR blend. At 120°C, maximum induction effect occurred at around a 40% blend ratio of ENR 50 and SMR L in the respective blends. For the filled stock at 140°C, carbon black exhibited less effect on the scorch property of the blends compared to silica. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1301–1305, 1998  相似文献   

9.
The effect of stearic acid on Mooney scorch time of epoxidized natural rubber (ENR 25 and ENR 50) and one grade of unmodified natural rubber (SMR L) was investigated in the concentration range of 0.5 to 14.5 phr. Other parameters, namely accelerator systems, temperature, and fillers (carbon black and silica), on the scorch property of ENR 25 in the presence of excess loading of stearic acid were also studied. Results indicate that scorch time increases with stearic acid loading for all the rubbers investigated, the rate of increase being fastest in ENR 50, followed by ENR 25 and SMR L. Mooney scorch time of ENR shows strong dependence on stearic acid loading for delay-action accelerators and at lower temperature of vulcanization. For a fixed filler loading, the dependence of scorch time on stearic acid concentration is similar to that of gum stock. The retardation effect exhibited by excess stearic acid on the vulcanization of ENR may be attributed to complex formation of chelates and the reduction in activation of adjacent double bonds in ENR resulting from interaction between stearic acid and the epoxide group of ENR. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
In this study, cerium oxide nanoparticles (nanoceria, CeNP) were used as a nanofiller in epoxidized natural rubber with varying epoxide levels, including 25% epoxidation (ENR-25) and 50% epoxidation (ENR-50). Co-precipitation methods were employed to synthesize a pure phase of CeNP with an average particle size of 11.4 ± 2.0 nm. CeNP was characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy. The effect of CeNP loading with 0–3 parts per hundreds of rubber (phr) on the properties of rubber nanocomposites was explored. ENR-25 nanocomposites with 1 phr of CeNP exhibited higher tensile strength and elongation at break compared to ENR-50 nanocomposites. These findings correspond to a lower Payne effect, improved scorch safety, and better processability. The strongest and most effective CeO2–ENR interactions via silane linkages are expected to outperform sulfur crosslinking in ENR-25 having 1 phr of CeNP. Microstructural evaluation of an ENR-25 sample containing 1 phr of CeNP indicated well-distributed nanofillers in the ENR-25 matrix, indicating that CeNP and ENR-25 appeared to be well-matched. Hardness of all ENR nanocomposites increased with CeNP loading. The cracking resistance, creep properties, and thermal stability of rubber nanocomposites were unaffected by addition of CeNP in the ENR-25 and ENR-50 samples.  相似文献   

11.
《国际聚合物材料杂志》2012,61(3-4):241-254
Abstract

The paper reports on the curing characteristics and mechanical properties of oil palm wood flour (OPWF) reinforced epoxidized natural rubber (ENR) composites. Three sizes of OPWF at different filler loadings were compounded with a two roll mill. The cure (t 90) and scorch times of all filler size decrease with increasing OPWF loading. Increasing OPWF loading in ENR compound resulted in reduction of tensile strength and elongation at break but increased tensile modulus, tear strength and hardness. The composites filled with smaller OPWF size showed higher tensile strength, tensile modulus and tear strength. Scanning electron microscope (SEM) micrographs showed that at lower filler loading the fracture of composites occurred mainly due to the breakage of fibre with minimum pull-out of fibres from the matrix. However as the filler loading is increased, the fibre pull-out became very prominent due to the lack of adhesion between fibre and rubber matrix.  相似文献   

12.
The effect of concentration of antioxidants on the Mooney scorch time of two grades of epoxidized natural rubbers (ENR 25 and ENR 50) and one grade of natural rubber (SMR L) was studied using a Monsanto automatic Mooney viscometer (MV 2000). Three types of antioxidants, viz., 2,2′‐methylene‐bis(4‐methyl, 6‐tertbutylphenol) (AO 2246), N‐isopropyl‐N′‐phenyl‐p‐phenylenediamine (IPPD) and poly‐2,2,4‐trimethyl‐1,2‐dihydroquinoline (TMQ) were used, and the concentration range was varied from 0 to 5 phr. The conventional vulcanization system with 2‐mercaptobenzothiazole (MBT) as the accelerator was used throughout the study. Results show that increasing the phenol‐based antioxidant (AO 2246) concentration will increase the scorch time of ENR at a lower temperature of vulcanization while its effect on SMR L is not significant. This retardation effect is attributed to the “solvation” of epoxide group by the phenolic group in AO 2246, thus reducing the activation of adjacent double bond in ENR. The scorch time, however, is shortened by the amine‐based antioxidants (IPPD and TMQ) for the three rubbers studied, a phenomenon associated with the ability of the amine group to enhance the formation of more active sulfurating agent and subsequently increases the cure rate as the concentration of the amine‐based antioxidants is increased. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2940–2946, 1999  相似文献   

13.
Abstract

Comparison studies on effects of feldspar and silica (Vulcasil C) as a filler in (SMR L grade natural rubber) vulcanizates on curing characteristics, mechanical properties, swelling behavior, thermal analysis, and morphology were examined. The incorporation of both fillers increases the scorch time, t 2, and cure time, t 90, of SMR L vulcanizates. At a similar filler loading, feldspar exhibited longer t 2 and t 90 but lower values of maximum torque, MHR, and torque difference, MHR–ML than did silica-filled SMR L vulcanizates. For mechanical properties, both fillers were found to be effective in enhancing the tensile strength (up to 10 phr), tensile modulus, and hardness of the vulcanizates. However, feldspar-filled SMR L vulcanizates showed lower values of mechanical properties than did silica-filled SMR L vulcanizates. Swelling measurement indicates that swelling percentages of both fillers-filled SMR L vulcanizates decrease with increasing filler loading whereas silica shows a lower swelling percentage than feldspar-filled SMR L vulcanizates. Scanning electron microscopy (SEM) on fracture surface of tensile samples showed poor filler–matrix adhesion for both fillers with increasing filler loading in the vulcanizates. However, feldspar-filled SMR L vulcanizates showed poorer filler–matrix adhesion than did silica-filled SMR L vulcanizates. Thermogravimetric analysis (TGA) results indicate that the feldspar-filled SMR L vulcanizates have higher thermal stability than do silica-filled SMR L vulcanizates.  相似文献   

14.
Abstract

The most significant factor, which prescribes the enhancement of properties in rubber by the incorporation of nanoclay, is its distribution in the rubber matrix. The study deals with the utilisation of epoxidised natural rubber (ENR) as a polar compatibiliser to achieve better dispersion of nanoclay in non‐polar polymer matrix. Epoxidised natural rubber–nanoclay composites (EC) were prepared by solution mixing. The obtained nanocomposites were incorporated in ethylene propylene diene terpolymer (EPDM) with sulphur as a curing agent. The morphological studies proved the intercalation of nanoclay in ENR, and further incorporation of EC in EPDM matrix leads to exfoliation of nanoclay. Curing study demonstrated faster scorch time, cure time and increase in maximum torque for the nanoclay loaded EPDM compounds compared to pure one. Dynamic mechanical thermal analysis showed increase in storage modulus and lesser damping characteristics for the compounds containing nanoclay loading in EPDM matrix followed by substantial improvement in the overall mechanical properties.  相似文献   

15.
The effect of sodium carbonate on the Mooney scorch time and cure index of epoxidized natural rubber (ENR 50) was studied with concentrations of 0–2 phr and 100–160°C temperatures. A conventional vulcanization system based on an ASTM formulation was used throughout the investigation on the gum and carbon black filled rubber compound. The results indicated that the scorch time and cure index for the gum and filled compounds increased to a maximum value at 0.15 phr of sodium carbonate, and further loading of sodium carbonate caused it to decrease. This observation was attributed to the neutralization of the residual acid in ENR 50 in the initial stage, thus reducing the formation of ether crosslinks via an acid‐catalyzed ring‐opening reaction with the epoxide group in ENR 50. However, as the sodium carbonate was increased beyond 0.15 phr, the excess sodium carbonate enhanced the vulcanization rate as shown by the drop of the scorch time and cure index. The peak maximum was more evident at lower temperature and its peak height decreased with increasing temperature, suggesting that the neutralization effect by sodium carbonate was overshadowed by the faster cure rate resulting from the availability of thermal energy to overcome the activation energy of vulcanization as the temperature was elevated. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1352–1355, 2001  相似文献   

16.
Curing characteristics, fatigue, and hysteresis behaviour of feldspar filled SMR L vulcanizates and feldspar filled ENR 50 vulcanizates were studied. Two different types of natural rubber, SMR L and ENR 50 having 0 and 50 mol% of epoxide groups were used. The feldspar filled natural rubber vulcanizates were compared at similar filler loading which were used at 0, 10, 20, and 30 phr of filler loading. The curing characteristics such as scorch time (t 2) and cure time (t 90) slightly increased with increasing feldspar loading for both rubber vulcanizates. Besides t 2 and t 90, maximum torque (M HR) significantly increased for both rubbers with increasing feldspar loading. The fatigue test showed that fatigue life decreased with increasing extension ratio, strain energy and filler loading. As the filler loading increased, the poor wetting of the feldspar by the rubber matrix gave rise to poor interfacial adhesion between filler and rubber matrix. Results also indicate that the vulcanizates with the highest feldspar loading exhibited the highest hysteresis. The feldspar filled SMR L vulcanizates showed higher fatigue life and lower hysteresis compare to feldspar filled ENR 50 vulcanizates.  相似文献   

17.
This study aimed at preparing nanocomposite from epoxidized natural rubber with about 40 mol% epoxidation (ENR40), vinyl acetate ethylene copolymer (VAE) contained about 70 wt% acetate groups and nanosilica (nSiO2). Two parts by weight per hundred parts of rubber/resin of nSiO2 were assembled to 80/20 (w/w) ENR40/VAE blend via latex blending. The resulting nanocomposite latex was coagulated before compounding with curing agents in an internal mixer. Tetrabenzylthiuram disulphide was used as a non‐carcinogenic accelerator in three sulfur vulcanization/curing systems, namely conventional (CV), semi‐efficient (semi‐EV) and efficient (EV) systems. The rubber compounds were sheeted on a two‐roll mill and press‐cured using a compression molding machine. Influence of curing systems on cure characteristics, tensile properties, thermal stability, dynamic mechanical properties and oil resistance of the nanocomposites was investigated. The results revealed that the CV system exhibited the highest crosslink density, tensile properties and storage modulus, while the EV system exhibited the longest scorch and cure time and the highest thermal stability and oil resistance. Moreover, the percentage retention of the tensile properties after thermal aging for CV system was lower than that of semi‐EV and EV systems. However, the pristine ENR40 and 80/20 (w/w) ENR40/VAE blend were also prepared for comparison. J. VINYL ADDIT. TECHNOL., 25:E28–E38, 2019. © 2018 Society of Plastics Engineers  相似文献   

18.
Onium ion‐modified montmorillonite (organoclay) was melt compounded with natural rubber (NR) in an internal mixer and cured by using a conventional sulfuric system. Epoxidized natural rubber with 50 mol % epoxidation (ENR 50) was used in 10 parts per hundred rubber (phr) as a compatibilizer. The effect of organoclay with different filler loading up to 10 phr was studied. Cure characteristics were determined by a Monsanto MDR2000 rheometer, whereas the tensile, compression, and tear properties of the nanocomposites were measured according to the related ASTM standards. While the torque maximum and torque minimum increased slightly, both scorch time and cure time reduced with the incorporation of organoclay. The tensile strength, elongation at break, and tear properties went through a maximum (at about 2 phr) as a function of the organoclay content. As expected, the hardness, moduli at 100% (M100) and 300% elongations (M300) increased continuously with increasing organoclay loading. The compression set decreased with incorporation of organoclay. The dispersion of the organoclay in the NR stocks was investigated by X‐ray diffraction and transmission electron microscopy. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1083–1092, 2006  相似文献   

19.
The effect of epoxidized natural rubber (ENR) or polyethylene acrylic acid (PEA) as a compatibilizer on properties of ethylene vinyl acetate (EVA)/natural rubber (SMR L) blends was studied. 5 wt.% of compatibilizer was employed in EVA/SMR L blend and the effect of compatibilizer on tensile properties, thermal properties, swelling resistance, and morphological properties were investigated. Blends were prepared by using a laboratory scale of internal mixer at 120°C with 50 rpm of rotor speed. Tensile properties, thermal properties, thermo-oxidative aging resistance, and oil swell resistance were determined according to related ASTM standards. The compatibility of EVA/SMR L blends with 5 wt.% of compatibilizer addition or without compatibilizing agent was compared. The EVA/SMR L blend with compatibilizer shows substantially improvement in tensile properties compared to the EVA/SMR L blend without compatibilizer. Compatibilization had reduced interfacial tension and domain size of ethylene vinyl acetate (EVA)/natural rubber (SMR L) blends.  相似文献   

20.
Geopolymer (GP) was synthesized and used as activators in sulfur vulcanization of epoxidized natural rubber (ENR). Influences of GP on cure characteristics, crosslink density, mechanical, thermal, and morphological properties were investigated and compared to the conventional rubber formulation with ZnO activator. The ZnO is a hazardous chemical for the environment and has proclaimed that its application in rubber technology should be reduced and controlled. It was found that the GP-activated ENR compounds showed significantly higher vulcanization rate than cases with the conventional ZnO compound. This was indicated by the GP activated compounds having shorter scorch time, cure times, and lower activation energy but higher cure rate index (CRI). Also, the GP activated ENR compounded with stearic acid exhibited the highest conversion. This matches well the highest torque difference and crosslink density, observed by temperature scanning stress relaxation (TSSR) and swelling measurements. Furthermore, the GP-activated vulcanizate had better thermal stability than the ZnO-activated ENR material. In addition, the GP-activated ENR vulcanizate with stearic acid exhibited high 100% moduli, tensile strength, and hardness. This proves that GP has a high potential for use as activators in sulfur vulcanization of rubber compounds, as an alternative to the conventional ZnO. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48624.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号