首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
通过分析SKINNY算法的密钥扩展算法特性以及算法结构,给出了两类SKINNY-n-n算法的相关密钥不可能差分区分器,而后据此对19轮的SKINNY算法进行了攻击,得到了对于SKINNY-64-64和SKINNY-128-128攻击所需数据复杂度分别为2~(55)、2~(104)个选择明文,计算复杂度分别为为2~(40. 82)次19轮SKINNY-64-64加密和2~(77. 76)次19轮SKINNY-128-128加密,存储复杂度分别为2~(48)和2~(96)。此外,针对SKINNY算法族中的低延迟变体-MANTIS算法,利用其FX结构以及密钥扩展算法的Tweakey结构,首先基于α映射,给出了一类平凡相关密钥差分特征;而后找到一种1轮循环结构,借此构造了对于MANTIS_(r core)的相关密钥矩阵区分器(1≤r≤6);最后,利用现有的对于MANTIS_5的攻击结果,改进得到了一类新的相关密钥差分路径,将区分器概率提高到2~(28. 35),有效降低攻击所需复杂度。  相似文献   

2.
Zodiac 算法的不可能差分和积分攻击   总被引:2,自引:0,他引:2  
孙兵  张鹏  李超 《软件学报》2011,22(8):1911-1917
重新评估了Zodiac算法抗不可能差分攻击和积分攻击的能力.已有结果显示,Zodiac算法存在15轮不可能差分和8轮积分区分器.首先得到了算法概率为1的8轮截断差分,以此构造了Zodiac算法完整16轮不可能差分和9轮积分区分器.利用9轮积分区分器,对不同轮数Zodiac算法实施了积分攻击,对12轮、13轮、14轮、15轮和16轮Zodiac的攻击复杂度分别为234,259,293,2133和2190次加密运算,选择明文数均不超过216.结果表明,完整16轮192比特密钥的Zodiac算法也是不抗积分攻击的.  相似文献   

3.
《计算机工程》2019,(1):91-95
QARMA算法是一种代替置换网络结构的轻量级可调分组密码算法。研究QARMA算法抵抗相关密钥不可能差分攻击的能力,根据QARMA-64密钥编排的特点搜索到一个7轮相关密钥不可能差分区分器,在该差分区分器的前、后各添加3轮构成13轮相关密钥不可能差分攻击。分析结果表明,在猜测52 bit密钥时,与现有中间相遇攻击相比,该相关密钥不可能差分攻击具有攻击轮数较多、时间复杂度和空间复杂度较低的优点。  相似文献   

4.
Robin算法是Grosso等人在2014年提出的一个分组密码算法。研究该算法抵抗不可能差分攻击的能力。利用中间相错技术构造一条新的4轮不可能差分区分器,该区分器在密钥恢复阶段涉及到的轮密钥之间存在线性关系,在构造的区分器首尾各加一轮,对6轮Robin算法进行不可能差分攻击。攻击的数据复杂度为2118.8个选择明文,时间复杂度为293.97次6轮算法加密。与已有最好结果相比,在攻击轮数相同的情况下,通过挖掘轮密钥的信息,减少轮密钥的猜测量,进而降低攻击所需的时间复杂度,该攻击的时间复杂度约为原来的2?8。  相似文献   

5.
PICO算法是一个SP结构的迭代型轻量级密码算法,目前对该算法的差分分析和相关密钥分析研究尚未完善.本文借助自动化搜索技术,设计了一套基于SAT方法搜索SP结构算法差分路径和差分闭包的自动化工具,构建了搜索约减轮PICO算法差分路径以及差分闭包的SAT模型,评估了PICO算法抵抗差分攻击的能力,提供了比之前分析结果更准确的安全评估.给出了1–22轮PICO算法的最优差分路径及其概率;搜索到概率为2-60.75的21轮差分闭包和概率为2-62.39的22轮差分闭包;实现了26轮PICO算法的密钥恢复攻击,攻击的时间复杂度为2101.106,数据复杂度为263,存储复杂度为263.研究了PICO算法抵抗相关密钥攻击的能力,发现PICO算法的密钥编排算法存在缺陷,构建了任意轮概率为1的相关密钥区分器,给出了全轮PICO算法的密钥恢复攻击.所提模型适用于其他轻量级密码算法,尤其是拥有更长的分组或者轮数更多的分组密码算法.  相似文献   

6.
Midori算法是由Banik等人在AISACRYPT2015上提出的一种具有SPN结构的轻量级的加密算法。Midori的分组长度有64bit和128bit两种,分别为Midori64和Midori128,本文主要研究的Midori64。目前攻击者已经使用了不可能差分分析、中间相遇攻击、相关密钥差分分析等方法对Midori进行了分析,却没有使用相关密钥不可能差分分析进行分析。为了验证Midori算法的安全性,本文使用了相关密钥不可能差分分析了Midori算法,构造了一个Midori算法的9轮区分器,进行了Midori算法的14轮攻击,总共猜测了84bit密钥。  相似文献   

7.
刘青  卫宏儒 《计算机科学》2013,40(8):109-114
针对ARIRANG加密模式,利用相关密钥矩形攻击的方法对其安全性进行了重新评估。首先找到了一些新的38轮和39轮的高概率相关密钥矩形区分器,然后在此基础上将区分器进行改进,改进的主要思想是:利用模减差分和异或差分的混合表示方式代替原先的异或差分,同时在区分器的输出中选择一个差分集合代替原先单一的差分。基于以上各种新的高概率区分器,对全轮ARIRANG加密模式进行了攻击,其结果优于以往的攻击结果。其中最好的攻击结果为:攻击全轮的ARIRANG-256加密模式所需的数据复杂度和时间复杂度分别为2220.79和2155.60。  相似文献   

8.
针对Piccolo-80算法提出了一种5轮积分区分器,并将其向解密方向扩展了2轮,得到了7轮区分器。使用5轮区分器对无白化密钥的Piccolo-80进行了7轮和8轮的攻击,使用7轮区分器进行了9轮的攻击。其中,最好的攻击结果是使用7轮区分器,对有白化密钥的Piccolo-80进行9轮攻击,可恢复32比特相关轮密钥,需要的数据复杂度为2的48次方个明文,时间复杂度为2的52.237方次9轮加密。  相似文献   

9.
轻量级分组密码由于软硬件实现代价小且功耗低,被广泛地运用资源受限的智能设备中保护数据的安全。Midori是在2015年亚密会议上发布的轻量级分组密码算法,分组长度分为64 bit和128 bit两种,分别记为Midori64和Midori128,目前仍没有Midori128抵抗中间相遇攻击的结果。通过研究Midori128算法基本结构和密钥编排计划特点,结合差分枚举和相关密钥筛选技巧构造了一条7轮中间相遇区分器。再在此区分器前端增加一轮,后端增加两轮,利用时空折中的方法,提出对10轮的Midori128算法的第一个中间相遇攻击,整个攻击需要的时间复杂度为2126.5次10轮Midori128加密,数据复杂度为2125选择明文,存储复杂度2105 128-bit块,这是首次对Midori128进行了中间相遇攻击。  相似文献   

10.
刘亚 《计算机应用研究》2020,37(7):2112-2116,2122
分组密码Kalyna在2015年6月被确立为乌克兰的加密标准,它的分组长度为128 bit、256 bit和512 bit,密钥长度与分组长度相等或者是分组长度的2倍,记为Kalyna-b/2b。为了保证该算法在实际环境中能安全使用,必须对其抵抗当下流行的攻击方法中的中间相遇攻击的能力进行评估。通过研究Kalyna-128/256轮密钥之间的线性关系,再结合多重集、差分枚举和相关密钥筛选等技巧构造了四条6轮中间相遇区分器链,在此区分器前端接1轮后端接3轮,再利用时空折中实现了对10轮Kalyna-128/256的中间相遇攻击,攻击所需的数据、时间和存储复杂度分别为2111△个选择明文、2238.63△次10轮加密和2222△个128 bit块。将之前10轮Kalyna-128/256中间相遇攻击最优结果的数据、时间和存储复杂度分别降低了24△倍、214.67△倍和226.8△倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号