首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A new approach to experimental evaluation of mass transfer resistances from drying experiments is proposed. A composite model of ginseng root mass transfer, based on one-dimensional treatment of diffusive and convective resistances as additive components of radial mass transfer, was developed. Mass transfer resistance was evaluated from a linear relationship between measured flux and thermodynamic driving force. Partitioning of mass transfer resistance into diffusive (core and skin) and convective (air boundary layer) resistances was done by modification of boundary conditions: (a) high (3 m/s) and low (1 m/s) air velocity; (b) skin removal. Total radial mass transfer resistance was evaluated as (146 ± 6) ? 106 s/m at 38°C, significantly decreasing to (48 ± 1.5) ? 106 s/m at 50°C. Boundary resistance was evaluated as (54 ± 5) ? 106 s/m at 38°C and (26 ± 3) ? 106 s/m at 50°C in the entire range of moisture contents. Core and skin resistances were both moisture dependent: core resistance increased from initial value of (6 ± 1) ? 106 s/m to (61 ± 6) ? 106 s/m toward the end of drying, whereas skin resistance decreased from initial value of (92 ± 5) ? 106 s/m to (25 ± 5) ? 106 s/m at the endpoint of drying. However, the sum of core and skin resistances, which represents composite diffusive resistance of intact ginseng root, was constant and independent of moisture content: (91 ± 4.6) ? 106 s/m at 38°C and (22 ± 1.6) ? 106 s/m at 50°C. The relationship between mass transfer resistance R and drying rate factor k = 1/RC was used for verification of the composite model.  相似文献   

2.
This study compared air-abrasion and etching regimens on adhesion of resin luting agent to zirconium dioxide. Ceramic specimens (LAVA, 3 M ESPE) (N = 16) were embedded in acrylic resin and exposed surfaces were polished. The specimens were randomly assigned into four groups (n = 12, 3 specimens for each disc): SC: Air-borne particle abrasion (30 μm aluminum oxide particles coated with silica, CoJet, 3 M ESPE); MH: Heated chemical solution (Methanol-800 mL; 37% Hydrochloric Acid-200 mL; Ferric Chloride-2 g) at 100 °C for 30 min, MHP: Primer (Metal/Zirconia Primer, Ivoclar Vivadent) + MH, P: Primer only (Metal/Zirconia Primer). Cylindrical molds (internal diameter: 0.7 mm; height: 1.5 mm) were placed on each conditioned specimen, filled with resin cement (Multilink Automix) and photo-polymerized for 60 s. After 24 h, the molds were removed and the specimens were stored in distilled water at 37 °C for six months). Microshear test was performed in a Universal Testing Machine (1 mm/min). Failures types were classified as adhesive, mixed, or cohesive. In another set of specimens (n = 2 per group) contact angle measurements were recorded. Data were analyzed statistically using Kruskal–Wallis and Dunn’s tests (α = 0.05). The surface conditioning method significantly affected the mean bond strength (MPa) (p < 0.0001): SC(18.3 ± 0.3)a < P(5.00 ± 0.07)b < MHP(4.7 ± 0.08)c < MH(0.84 ± 0.01)c. While Group SC showed mainly adhesive (58%) and mixed (41.7%) failure types, groups MH, MHP, and P presented exclusively adhesive failures. SC, MHP, and P (29–32°) showed lower contact angle than MH (78.9°). Volume loss was the highest with MHP (9.92 μl) followed by SC (9.67 μl).  相似文献   

3.
The sessile drop technique was used to investigate the evolution of the physicochemical properties of cedar wood as a function of contact time with the Penicillium expansum spores. The most important finding showed that the impact of different contact periods (2, 4, 6, 8, 10, and 24 hr) on the wood surface were very indicative. In fact, after 2 hr of contact, the results have shown a significant impact of the bioadhesion of spores to the substrate on both the hydrophobic character (θW = 108.5°; ΔGiwi = ?28.25 mJ/m2), the electron donor (γ? = 13.63 mJ/m2), and the electron acceptor (γ+ = 4.35 mJ/m2) parameters that were significantly reduced compared to the initial wood (θW = 118.5°; ΔGiwi = ?6.29 mJ/m2; γ? = 32.1 mJ/m2; and γ+ = 9.1 mJ/m2). In addition, this decrease of parameters continued over time to stabilize after 10 hr of contact. Indeed, after 24 hr, the acid/base properties were almost zero and the contact angle with water decreased to 30°. Moreover, it was found that the coefficient of correlation (r2) was strong between the contact angle with water, the surface energy, and the electron acceptor character with the contact time parameter with values (r2 = 0.65), (r2 = 0.79), and (r2 = 0.68), respectively.  相似文献   

4.
Metabolic syndrome (MetS) refers to states of insulin resistance that predispose to development of cardiovascular disease and type 2 diabetes (T2DM). The aim was to investigate whether plasma lipids and lipid metabolism differ in MetS patients compared to those with T2DM with poor glycemic control (glycated hemoglobin > 7.0). Eighteen patients with T2DM, 18 with MetS and 14 controls, paired for age (40–70 years) and body mass index (BMI), were studied. Plasma lipids and the kinetics of a triacylglycerol-rich emulsion labeled with [3H]-triolein ([3H]-TAG) and [14C]-cholesteryl esters ([14C]-CE) injected intravenously followed by one-hour blood sampling were determined. Lipid transfers from an artificial nanoemulsion donor to high-density lipoprotien (HDL) were assayed in vitro. Low-density lipoprotein (LDL) and HDL cholesterol (mg/dl) were not different in T2DM (128 ± 7; 42 ± 7) and MetS (142 ± 6; 39 ± 3), but triacylglycerols were even higher in MetS (215 ± 13) than in T2DM (161 ±11, p < 0.05). Fractional clearance rate (FCR, in min1) of [3H]-TAG and [14C]-CE were equal in T2DM (0.008 ± 0.018; 0.005 ± 0.024) and MetS (0.010 ± 0.016; 0.006 ± 0.013), and both were reduced compared to controls. The transfer of non-esterified cholesterol, phospholipids and triacylglycerols to HDL was higher in MetS and T2DM than in controls (p < 0.01). Cholesteryl ester transfer and HDL size were equal in all groups. Results imply that MetS is equal to poorly controlled T2DM concerning the disturbances of plasma lipid metabolism examined here, and suggest that there are different thresholds for the insulin action on glucose and lipids. These findings highlight the magnitude of the lipid disturbances in MetS, and may have implications in the prevention of cardiovascular diseases.  相似文献   

5.
This study investigated the effect of particle types with different morphology and surface properties on the wettability and adhesion of resin cement to zirconia. Zirconia specimens (5 × 5 × 1 mm3) were wet polished. Specimens were randomly assigned to one of the following protocols (N = 36, n = 9 per group): Group CON: Control, no surface conditioning; Group AL: Chairside air-abrasion with aluminium trioxide (50 μm Al2O3) + silane; Group SIL: Chairside air-abrasion with alumina particles coated with silica (SIL) (30 μm SiO2, SilJet) + air-drying + silane; Group 4: Chairside air-abrasion with readily silanized silica particles (SILP) (30 μm SiO2, SilJet Plus). Adhesive resin was applied and resin cement (Variolink II, Ivoclar) was bonded using polyethylene moulds and photo-polymerized and aged (thermocycling, 6.000 cycles, 5–55 °C). Shear bond test was performed using Universal Testing Machine (1 mm/min). Pretest failures were considered 0 MPa. Contact angle measurements were performed (n = 2/group, sessile drop with water). Data (MPa) were analyzed (ANOVA, Tukey’s (α = 0.05). Two-parameter Weibull distribution values including the Weibull modulus, scale (m) and shape (0), values were calculated. Contact angle measurements were in descending order as follows: SIL (74°)c < CON (60°)c < AL (51°)b < SILP (40°)a. Bond strength (MPa) with SIL (17.2 ± 4)a and SILP (17.3 ± 1.9)a demonstrated no significant difference (p > 0.05), being higher than AL (8.4 ± 1.5)b and CON (0)c (p < 0.05). Failure types were exclusively adhesive in all groups. Weibull distribution presented the highest shape (0) for SILP (10.8). SILP presented better wettability than AL. SILP provided similar bond strength to SIL. Readily silanized silica particles may substitute for conventional silica coating and silanization.  相似文献   

6.
《分离科学与技术》2012,47(16):3876-3887
Abstract

In this work, polyethersulfone (PES) asymmetric nanofiltration (NF) membranes were prepared by immersion precipitation phase inversion process. The casting solution contained N-methyl-2-pyrrolidone (NMP) as solvent, 1-propanol and 2-propanol as nonsolvent additives, and polyvinylpyrrolidone (PVP) as pore former additive. Water was used as a coagulant. The effects of the PVP content in the casting solution and the exposed time on the performances of the NF membranes were investigated. It was found that with the increase of PVP content, the pure water flux (PWF) increased to the largest value and then decreased. The rejection to PEG 1000 always decreased. The largest value (1281.40 kg · m?2 · h?1 · MPa?1) of PWF appeared when the content of 1-propanol was 9 wt.%. However, when 2-propanol was added in the casting solution, the largest value of PWF was only 678.37 kg · m?2 · h?1 · MPa?1 (the content of 2-propanol was 7 wt.% and other preparing conditions were unchanged). The results meant that both PWF and rejection of the membranes with 1-propanol as additive were higher than that of 2-propanol as additive. The possible reason was discussed from the viewpoint of the difference of solubility of propanols to PES and PVP.  相似文献   

7.
This study compared the impact of four test methods on adhesion of resin composite to enamel and dentin. Human molars (N = 54) were randomly assigned to test the adhesion of resin composite material (Quadrant Universal LC) using one of the following test methods: (a) macroshear test (SBT; n = 16), (b) macrotensile test (TBT; n = 16), (c) microshear test (μSBT; n = 16) and (d) microtensile test (μTBT; n = 6). In a randomized manner, buccal or lingual surfaces of each tooth, were assigned as enamel or dentin substrates. Enamel and dentin surfaces were conditioned using an etch-and-rinse adhesive system (Syntac Classic). After storage (24 h, 37 °C), bond tests were conducted in a Universal Testing Machine (1 mm/min) and failure types were analyzed. Data were analyzed using Univariate and Tukey`s, Bonneferroni tests (α = 0.05). Two-parameter Weibull modulus, scale (m) and shape (0) were calculated. Test method (p < 0.001) and substrate type (p < 0.001) significantly affected the results. When testing adhesion of resin composite to enamel, SBT (25.9 ± 5.7)a, TBT (17.3 ± 5.1)a,c and μSBT (27.2 ± 6.6)a,d test methods showed significantly higher mean bond values compared to μTBT (10.1 ± 4.4)b (p < 0.05). Adhesion of resin composite to dentin did not show significant difference depending on the test method (12 ± 5.7–20.4 ± 4.8; p > 0.05). Only with SBT, significant difference was observed for bond values between enamel (25.9 ± 5.7) and dentin (12 ± 5.7; p < 0.05). Weibull distribution presented the highest shape values for enamel-μSBT (29.7) and dentin-μSBT (22.2) among substrate-test combinations. Regardless of the test method, cohesive failures in substrate were more frequent in enamel (19.1%) than in dentin (9.8%).  相似文献   

8.
Bioactive glasses are surface-active and able to induce remineralization of dentin. Two resin-modified glass-ionomer cements (RMGICs) doped with bioactive glass (Biosilicate®) were used as restorative materials in dentin. Experimental powders were made by incorporating 2, 5, and 10 wt% of Biosilicate® in Vitremer® (VT) and Fuji II LC® (FL) powders. Commercial FL and VT were used as control materials. Six cylinders of each material were tested for failure in compression (1.0 mm/min), after 24 h storage in distilled water at 37 °C. For microtensile bond strength (MTBS) test, cavity preparations were performed on 30 noncarious human molars and restored with the tested materials. Teeth were stored in water (37 °C) for 24 h or 7 days, sectioned into beams and tested for failure in tension (0.5 mm/min). Data were analyzed by analysis of variance and multiple-comparison tests (p < 0.05). Analysis of debonded specimens was performed by scanning electron microscopy. Only incorporation of 2 wt% of Biosilicate® did not decrease compressive strength of the RMGICs. Two weight percent of Biosilicate® into RMGICs produced an increase in MTBS after 24 h for FL and after 24 h and 7 days for VT. Two weight percent of Biosilicate® particles into RMGICs did not affect compressive strength and improved MTBS to dentin.  相似文献   

9.
The effects of green manure, crop sequence and off-farm composts on selected soil quality parameters were assessed in a three-year organic potato (Solanum tuberosum L.) rotation in Eastern Canada. Three crop sequences varying in preceding green manure [red clover (RCl) + RCl, and beans/buckwheat or carrots + oats/peas/vetch mixture (OPV)] as main plots and four fertility treatments applied in the potato phase only [control; inorganic fertilizer; municipal solid waste compost (MSW); composted paper mill biosolid (PMB)] as subplots were compared. In 2008 and 2010, changes in selected soil quality parameters (0–15 cm) were assessed prior to planting of potatoes and at potato tuber initiation stage. Potentially mineralizable nitrogen (N) and the acid phosphatase enzyme activity average values across years were greater following RCl (1.51 abs and 622 kg ha?1) compared with OPV (1.32 abs and 414 kg ha?1) at potato planting. Soil NO3–N average value was greater following RCl compared with OPV (63 vs. 52 kg ha?1) at tuber initiation. For the other measured parameters, OPV and RCl were similar. The soil organic carbon (C) and particulate organic matter-C were greater under PMB and MSW (31.1 and 7.57 kg ha?1) compared with fertilizer treatment (27.9 and 6.05 kg ha?1). The microbial biomass C and microbial biomass quotient were greater under MSW (216 kg ha?1 and 0.73 %) than PMB and fertilizer (147 kg ha?1 and 0.50 %) across crop rotations. Annual legume green manures and off-farm composts can be used to satisfy potato N requirement and maintains soil quality in organic potato rotations.  相似文献   

10.
Immediate dentin sealing (IDS) could avoid contamination of dentin from impression material and provisional cement but prior to final cementation of indirect restorations, removal of the provisional cement may damage the IDS. The objectives of this study were to investigate the effect of mechanical and air-particle cleansing protocols of provisional cement on IDS layer and subsequent adhesion of resin composite cement. The cuspal dentin surfaces of human third molars (N = 21, nquadrant = 84) were exposed by a low-speed diamond saw under water cooling and conditioned with an adhesive system based on the three-step etch and rinse technique (OptiBond FL). Provisional cement (Freegenol) was applied on each specimen. They were then randomly divided into six subgroups where the provisional cement was removed either by (1) air-borne particle abrasion with 50-μm Al2O3 particles at 2 bar (AL2), (2) air-borne particle abrasion with 50-μm Al2O3 particles at 3.5 bar (AL3.5), (3) air-borne particle abrasion with 30-μm SiO2 particles at 2 bar (SL2), (4) air-borne particle abrasion with 30-μm SiO2 particles at 3.5 bar (SL3.5), (5) prophylaxy paste (Cleanic) (PP) or (6) pumice-water slurry (PW) at 1500 rpm for 15 s. The dentin surface on each tooth was assigned to four quadrants and each quadrant received the cleansing methods in a clockwise sequence. The non-contaminated and non-cleansed teeth acted as the control (C). Two separate teeth, contaminated and cleansed according to six cleansing protocols, were allocated for scanning electron microscopy (SEM) analysis (×2000). The dentin surfaces in each quadrant received resin composite luting cement (Variolink II, Ivoclar Vivadent) incrementally in a polyethylene mould (diameter: 1 mm2; height: 4 mm) and photopolymerized. The specimens were stored in distilled water for 24 h at 37 °C until the testing procedures and then shear force was applied to the adhesive interface until failure occurred in a universal testing machine (0.5 mm/min). Microshear bond (μSBS) was calculated by dividing the maximum load (N) by the bonding surface area of the resin cement. Failure types were analysed using optical microscope and SEM. Data (MPa) were analysed using one-way ANOVA (α = 0.05). Two-parameter Weibull distribution values including the Weibull modulus, scale (m) and shape (0), values were calculated. Mean μSBS results (MPa) showed a significant difference between the experimental groups (p = 0.011) and were in a descending order as follows: C (8 ± 2.3)a < AL2 (6.7 ± 2.4)b < PP (6.9 ± 2)b < PW (6.5 ± 2.1)b < AL3.5 (5.8 ± 1.1)b < SL2 (5.3 ± 1)b < SL3.5 (5.2 ± 1)b. Failure types were predominantly mixed failure type between the dentin and the adhesive resin which is a combination of adhesive and cohesive failures in the adhesive resin. Cohesive failure in the dentin was not observed in any of the groups. Weibull distribution presented lower shape (0) for C (3.9), AL2 (3.2), PP (3.5) and PW (3.6). SEM analysis showed rough surfaces especially in the air-abraded groups whereas mechanical cleansing methods presented smoother surfaces and partially covered by particle remnants all of which occluded the dentin tubuli.  相似文献   

11.
Osmotic drying was carried out, with cylindrical samples of apple cut to a diameter-to-length ratio of 1:1, in a well-agitated large tank containing the osmotic solution at the desired temperature. The solution-to-fruit volume ratio was kept greater than 30. A modified central composite rotatable design (CCRD) was used with five levels of sucrose concentrations (34–63°Brix) and five temperatures (34–66°C). Kinetic parameters weight reduction (WR), moisture loss (ML), solids gain (SG) were considered. A polynomial regression model was developed to relate moisture loss and solids gain to process variables. A conventional diffusion model involving a finite cylinder was also used for moisture loss and solids gain, and the associated diffusion coefficients were computed. The calculated moisture diffusivity ranged from 8.20 × 10?10 to 24.26 × 10?10 m2/s and the solute diffusivity ranged from 7.82 × 10?10 to 37.24 × 10?10 m2/s. Suitable ranges of main parameters were identified for OD kinetics further study.  相似文献   

12.
In this article, simultaneous determination of dihydroxybenzene isomers [hydroquinone (HQ), catechol (CC), and resorcinol (RC)] was investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) at thionine functionalized multiwalled carbon nanotube (TH-MWCNTs) modified glass carbon electrode. CV and DPV results showed that the TH-MWCNTs modified electrode exhibited excellent recognition ability toward the three isomers of dihydroxybenzene. Their oxidize peak currents were linear over ranges from 9.0 × 10?7 to 3.6 × 10?4 M for HQ, from 3.3 × 10?6 to 8.1 × 10?4 M for CC and from 4.3 × 10?6 to 9.0 × 10?4 M for RC, with the detection limits of 2.7 × 10?7, 1.0 × 10?6, and 1.1 × 10?6 M, respectively. The proposed method would potentially be applied to multi-component analysis in environmental control and chemical industry.  相似文献   

13.
Experimental results of surface temperature and moisture content of twigs of mate were obtained in a conveyor-belt dryer operated batchwise. The first response was determined with an infrared sensor, while the second was by conventional gravimetry. A set of 0.04-m-long cylindrical twigs classified manually into three different subgroups on the basis of their diameters (3.5 × 10?3, 6.5 × 10?3, and 10 × 10?3 m) were used in the experiments. Drying always took place in a chamber fed with a thin single layer of material 0.5 m in length and 0.05 m wide. The fresh twigs without leaves at ambient temperature (≈27.2 ± 2.6°C) and with an initial moisture content close to 0.8 ± 0.1 were dried at three different average air temperatures (65.5, 80.2, and 83.8°C) for 7200 s. A full set of nine (31 × 31) drying experiments were performed by varying the examined factors (particle diameter and drying temperature) at three levels. The low estimated Biot numbers (<0.55) indicate that convection plays a much more important role than conduction in heat transfer. Because of this and since heating was much faster than drying, the Newton’s law of cooling alone was successfully applied to describe the increase of particle temperature with time. From a similar analysis involving a convective mass transfer coefficient calculated with the Chilton-Colburn analogy emerged high-mass-transfer Biot numbers (≈5.37 × 103 ? 3.65 × 105) that reveal drying of twigs is governed by diffusion. In fact, the equation that represents the Fick’s second law of diffusion in a long cylinder (one-dimensional transfer), solved analytically and coupled to the model of heat transfer, was able to describe the kinetics of drying of mate twigs.  相似文献   

14.
The objectives of this study were to investigate the adhesion of a universal adhesive used either in total-etch (TE) or self-etch (SE) mode with and without 2% chlorhexidine digluconate cavity disinfectant (CHX) or sodium fluoride/hydroxyethyl methacrylate (NaF/HEMA) to dentin. Dentin surfaces of extracted human non-carious third molar teeth (N = 18) were exposed and randomly assigned to two groups. Half of the teeth were conditioned with TE and the others with SE adhesive mode. The teeth were then randomly divided into two groups where half were cleaned with 2% CHX (Cavity Cleanser, Bisco, CC) and the other half with NaF/HEMA (Aqua Prep F, Bisco, APF). Control groups in TE (C1) and SE (C2) adhesive system did not receive any cavity disinfectant. Dentin surfaces were conditioned with universal adhesive (Single Bond Universal, SBU) and resin composite blocks (3 M Z550) were bonded incrementally on the conditioned dentin using a mold. The teeth were stored in water for 48 h, and from each tooth, beam-shaped specimens (1 mm2) were prepared (n = 14, per group). Microtensile bond strength (MBS) was measured using a universal testing machine (1 mm/min). Data (MPa) were analyzed using one-way ANOVA and Tukey’s test (α = 0.05). Two-parameter Weibull distribution values including the Weibull modulus, scale (m), and shape (0) values were calculated. Mean MTBS results (MPa) showed significant difference between the experimental groups (p = 0.001) and were in descending order as follows: C1-CC (32.8 ± 6.4)a?b < C2 (21.1 ± 4.8)b < C1-APF (19.3 ± 4.4)b < C2-CC (14.1 ± 4.1)c < C2-APF (8.1 ± 2.1)d. C1 and C2 presented non-significant bond strength of the resin composite bonded with SBU (p > 0.05). CC application significantly increased the bond strength in TE mode, but significant reduction was observed when used in SE mode (p < 0.05). The use of APF did not significantly decrease the bond strength in TE mode, but significant reduction was observed when used in SE mode. Considering Weibull parameters, characteristics of adhesion seem to be less reliable for C2-CC (m = 3.86) and more reliable for C1-CC (m = 6.77). Failure types were predominantly adhesive between the dentin and the adhesive resin. Mixed failures were more common for both C1 and C2 and total etch-CC combination.  相似文献   

15.
This article describes the analysis of heat and mass transfer coefficients for a single board of Pinus radiata (D. Don) timber over a range of high temperature and superheated steam drying conditions. The calculated heat transfer coefficients were in the range 20 to 60 W m?2 K?1. The mass transfer coefficients were of the order of 2 × 10?8 to 3 × 10?7 kg m?2 s?1, based on the vapor pressure difference, and of the order of 0.002 to 0.04 m s?1 (expressed in terms of mass transfer velocity) based on vapor concentration difference between the surface of the board and the bulk drying medium.  相似文献   

16.
A linear sweep anodic stripping voltammetric method using a carbon nanotube–gold nanoparticle-modified vibrating screen printed electrode for the determination of arsenic(III) is reported. The experiments were conducted with a 0.1 mol L?1 solution of H2SO4 in order to estimate the electrode area related to gold oxide formation. The results showed a clear reduction peak at approximately +0.85 V corresponding to the reduction of the gold surface oxide with a superficial area of 0.089 cm2. A vibrating motor was attached to the screen printed electrode to create a portable and autonomous system with enhanced mass transfer. The repeatability of the measurements was 2.4 % (n = 10) at the level of 0.5 mg L?1 of arsenic(III) under the best instrumental operating conditions. The peak current was linearly dependent on the arsenic(III) concentration, thus allowing the construction of a linear analytical curve in the range from 10 to 550 μg L?1 with the equation: ?Ip (μA) = 0.05 + 134.59 [As(III) (μg L?1)], R2 = 0.99. The obtained detection and quantification limits were 0.5 (3 SD) and 1.5 (10 SD) μg L?1, respectively, using 120 s as the deposition time. It was shown that Cu(II) does not interfere in the detection of As(III) using the proposed method.  相似文献   

17.
Abstract

Six cycles of loading, elution, and regeneration were performed to remove cesium (Cs+) from a Hanford Site tank waste sample using SuperLig® 644 resin. The sample, which was retrieved from Tank 241‐AW‐101, was diluted to 5.09 M Na+ and processed through dual ion exchange columns to remove 137Cs. Each column had an inside diameter of 1.45 cm and a height of 30 cm; and contained 15 mL of wet resin in the sodium form. The columns, designated as primary (lead) and polishing (lag), were connected in series during loading, but they were separated during elution and regeneration. The cesium loading on the primary column during the six cycles ranged from 160 to 225 bed volumes (BV) at <50% breakthrough. A gradual decline of the resin loading performances was observed as a function of number of loading cycles. For all cycles, the percent removal of cesium (137Cs) was greater than 99.99% and the decontamination factors (DFs) achieved were higher than 1.0 × 104. Elution of the resin with 0.5 M nitric acid at 25 ± 2°C was effective. Approximately 99% of the 137Cs bound on the resin was eluted with less than 15 BV of the eluent (0.5 M nitric acid). The cumulative dose absorbed by the resin in the primary column was 1.99 × 107 rad with a 20% loss of ion exchange capacity was at 50% breakthrough after completing six loading cycles.  相似文献   

18.
Two crop rotations dominated by spring cereals and grass/clover leys on a clay soil were studied over 2 years with respect to nitrogen (N) and phosphorus (P) leaching associated with pig or dairy slurry application in April, June and October. Leaching losses of total N (TN), total P (TP), nitrate-N and dissolved reactive P (DRP) were determined in separately tile-drained field plots (four replicates). Mean annual DRP leaching after October application of dairy slurry (17 kg P ha?1) to growing grass/clover was 0.37 kg ha?1. It was significantly higher than after October application of pig slurry (13 kg ha?1) following spring cereals (0.16 kg ha?1) and than in the unfertilised control (0.07 kg P ha?1). The proportion of DRP in TP in drainage water from the grass/clover crop rotation (35 %) was higher than from the spring cereal rotation (25 %) and the control (14 %). The grass/clover rotation proved to be very robust with respect to N leaching, with mean TN leaching of 10.5 kg ha?1 year?1 compared with 19.2 kg ha?1 year?1 from the cereal crop rotation. Pig slurry application after cereals in October resulted in TN leaching of 25.7 kg ha?1 compared with 7.0 kg ha?1 year?1 after application to grass/clover in October and 19.1 kg ha?1 year?1 after application to spring cereals in April. In conclusion, these results show that crop rotations dominated by forage leys need special attention with respect to DRP leaching and that slurry application should be avoided during wet conditions or combined with methods to increase adsorption of P to soil particles.  相似文献   

19.
In this study, we investigated the potential adhesion of marine bacteria isolated from seawater in the port of Chmaâla, Morocco, to sea-immersed 304 and 316 stainless steels using thermodynamic approach and the Environmental Scanning Electron Microscopy (ESEM). Furthermore, the physicochemical properties including hydrophobicity and electron donor / electron acceptor (Lewis acid-base) of bacterial isolates and both substrates were evaluated using the contact angle measurements. The molecular identification indicated that the isolated strains were Bacillus thuringiensis and Bacillus amyloliquefascience. Results also showed that both bacterial strains’s cells have a hydrophilic character with ΔGiwi values of 29.30 and 24.12 mJ m?2 respectively for Bacillus thuringiensis and Bacillus amyloliquefascience, and are strong electron donating (γ?) and weakly electron accepting (γ+). For substrates surfaces, we found that both sea-immersed stainless steels types were hydrophilic and present strong electron-donor character (γ? = 49 ± 0.2 mJ m?2 for 304 and γ? = 55.07 ± 0.02 mJ m?2 for 316) and weak electron-acceptor character (γ+ = 5.4 ± 0.1 mJ m?2 for 304 and γ+ = 8.3 ± 0.06 mJ m?2 for 316). The theoretical prediction showed that both tested strains, B. thuringiensis and B. amyloliquefascience, exhibited positive values of ΔGTotal vis-à-vis the two sea-immersed stainless steels types which indicates unfavorable adhesion while the ESEM electro-micrographs show that both strains were able to adhere to both strainless steels surfaces.  相似文献   

20.
Interactions of 134Cs(I), 152,154Eu(III), and 60Co(II) ions from HCl acid solutions with tungstocerate(IV) gel matrices, dried at 50°C, have been individually investigated by the batch equilibration method. The selectivity sequence was found to be in the order: Cs(I) >Eu(III) >Co(II). The breakthrough capacities of 12‐tungstocerate(IV) for Cs(I), Eu(III), and Co(II) were found to be 1.00, 0.55, and 0.26 mmol/g of the sorbent, respectively. In addition, a mixture of these radionuclides [6.20 × 10?3 M Cs(I), 3.53 × 10?3 M Eu(III), and 1.4 × 10?3 M Co(II)], in 150 ml of 0.02 M HCl solution was passed through 1‐g 12‐tungstocerate(IV) chromatographic column. Quantitative uptake of both 134Cs(I) and 152,154Eu(III) has been achieved, while only ?22% of 60Co(II) has been retained. Then, quantitative elution of the retained fraction of Co(II) was achieved with 14 ml of 0.1 M HCl acid solution leaving Eu(III) and Cs(I) strongly retained onto the column. Quantitative elutions of Eu(III) and Cs(I) were achieved by passing 20 ml of 0.3 M HCl and 16 ml of 2 M HCl acid solutions, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号