首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin films of polyaniline (PANi) and PANi: titanium oxide (TiO2) composites have been synthesized by sol–gel spin coating technique. The TiO2 powder of particle size 50–60 nm was synthesized by the sol–gel technique and the polyaniline was synthesized by the chemical oxidative polymerization of aniline. The composite films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy and the four-probe method. The results were compared with corresponding data on pure polyaniline films. The intensity of diffraction peaks for PANi:TiO2 composites is lower than that for TiO2. The characteristic FTIR peaks of pure PANi are observed to shift to a higher wavenumber in PANi:TiO2 composite, which is attributed to the interaction of TiO2 particles with PANi molecular chains. The resistivity measurement shows that the molecular chain constitution of polyaniline is the most important carrier in the polyaniline: nano-TiO2 composite.  相似文献   

2.
Polyaniline–CdS nanocomposites have been synthesized by spin coating technique. The nanocrystalline CdS powder of particle size 40–50 nm was synthesized by sol–gel technique and the polyaniline was synthesized by chemical oxidative polymerization of aniline. The composite films were characterized by X-ray diffraction (XRD), field effect scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), UV–Vis spectroscopy and Four probe method. The results were compared with corresponding data on pure polyaniline films. The intensity of diffraction peaks for PANi–CdS composites is lower than that for CdS. The conductivity measurement shows that molecular chain constitution of polyaniline is the most important carrier in polyaniline–CdS nano composite. The optical studies showed that variation in band gap of polyaniline (3.40 eV) to 2.54 eV CdS which is attributed to the interaction of CdS nanoparticles with PANi molecular chains.  相似文献   

3.
Thin films of polyaniline (PANi) and PANi:titanium oxide (TiO2) composites have been synthesized by sol—gel spin coating technique. The TiO2 powder of particle size 50–60 nm was synthesized by sol–gel technique and the polyaniline was synthesized by chemical oxidative polymerization of aniline. The composite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) Fourier transform infrared (FTIR) and UV-vis spectroscopy, and the results were compared with polyaniline films. The intensity of the diffraction peaks for PANi:TiO2 composites is lower than that for TiO2. The characteristic FTIR peaks of PANi were found to shift to a higher wave number in the PANi:TiO2 composite. These observed effects have been attributed to the interaction of TiO2 particles with PANi molecular chains. The room temperature resistivity of polyaniline:nano-TiO2 composite is 3.43 × 103 Ω cm and the resistivity of pure nano-TiO2 particles is 1.60 × 106 Ω cm.  相似文献   

4.
The polyaniline (PAn), polyaniline/titanium dioxide (PAn/TiO2), polyaniline/zinc oxide (PAn/ZnO), and a novel conducting polymer nanocomposites, polyaniline/titanium dioxide + zinc oxide (PAn/TiO2+ZnO), were synthesized by in situ electropolymerization and potential cycling on gold electrode. The PAn and nanocomposite films were characterized by cyclic voltammetry, Fourier transform infra‐red (FTIR) spectroscopy, in situ resistivity measurements, in situ UV–Visible, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The differences between cathodic and anodic peaks of three redox couples were obtained for PAn and polymeric nanocomposite films. During cathodic and anodic scans, the shift of potential was observed for polymer nanocomposite films. The characteristic FTIR peaks of PAn were found to shift to lower wavelengthsin polymer nanocomposite films. These observed effects have been attributed to interaction of TiO2, ZnO, and TiO2+ZnO particles with PAn molecular chains. Significant differences from in situ resistivity of PAn and nanocomposite films were obtained. The resistance of PAn/TiO2, PAn/ZnO, and PAn/TiO2+ZnO films were found to be smaller than the PAn film. The in situ UV–Visible spectra for Pan and polymer nanocomposite films were studied. The results show the intermediate spectroscopic properties between PAn and polymer nanocomposite films. The morphological analyses of PAn and nanocomposite films have been investigated. The nanocomposites SEM and TEM micrographs suggest that the inorganic semiconductor particles were incorporated in organic conducting polymer, which consequently modifies the morphology of the films significantly. POLYM. COMPOS., 35:351–363, 2014. © 2013 Society of Plastics Engineers  相似文献   

5.
The N‐substituted polyaniline (PANi) was synthesized by incorporation of bromine‐terminated polystyrene (PS‐Br) onto the emeraldine form of polyaniline. End brominated polystyrene was synthesized by atom transfer radical polymerization (ATRP) technique and then deprotonated polyaniline was reacted with PS‐Br to prepare PS‐grafted PANi (PS‐g‐PANi) copolymer through N‐grafting reaction. The degree of N‐grafting can be controlled by adjusting the molar feed ratio of PS‐Br to the number of repeat units of PANi. The microstructure and compositions of the PS‐g‐PANi copolymers with different degrees of N‐substitution were characterized by FT‐IR, elemental analysis, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The cyclicvoltammetry shows that the electroactivity of N‐substituted PANi is strongly dependent on the degree of N‐grafting. The solubility of PS‐g‐PANi copolymers in common organic solvents such as tetrahydrofuran and chloroform was improved by increasing the degree of N‐grafting, and also the samples are partially soluble in xylene. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
Electrochemical synthesis is a powerful tool for surface modification, substrate cleaning and formulation of thin films and bulk materials. It is especially suited for surface modification of fibers, metals and films. In the past decade electrochemical method has become the preferred technique for in situ passivation, and coating of commodity metals such as aluminum, zinc, copper and steel.

We have successfully synthesized different kinds of conducting polymers, including polypyrrole (PPy)–polyaniline (PANi) composites. The processability and corrosion performance of PPy/PANi, composite coatings are significantly better than those for either PPy or PANi, coatings.

In this paper, we will discuss the use of electrochemical technique in the synthesis and characterization of multi-functional corrosion resistant conducting polymer coatings for aerospace and automotive applications.  相似文献   


7.
Blends of chemically prepared polyaniline emeraldine base (PANi) with cellulose esters were studied as films by UV–visible spectroscopy and cyclic voltammetry. The cellulose esters used were acetate, propionate, acetate butyrate, and acetate hydrogen phthalate. Films were prepared by casting from N‐methylpyrrolidone or formic acid, and the effect of doping by acids on their spectral and electrochemical properties was studied. Similar behavior was observed with the acetate, propionate, or acetate butyrate, with spectral changes on adding acid due to protonation of the PANi. In agreement with previous studies, kinetic measurements on PANi in a cellulose acetate matrix shows a relatively slow spectral change on protonation. In contrast, with cellulose acetate hydrogen phthalate (CAHP), no changes were observed on adding acid, and it is suggested that the hydrogen phthalate group acts as proton donor. This was mirrored by the cyclic voltammetry behavior in hydrochloric acid solution. Electrochemical studies on films of PANi/CAHP blends in different relative proportions in sulfuric acid solution show a marked dependence on the solvent used for casting, with higher currents and better electrical conductivity being observed in films prepared from N‐methylpyrrolidone. This is shown to be due to the presence of PANi particles in the films. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2182–2188, 2002  相似文献   

8.
The performance at room temperature of nanostructured polyaniline (PANi)–titanium dioxide (TiO2) ammonia gas sensors was investigated. The PANi–TiO2 thin-film sensors were fabricated with a spin-coating method on glass substrates. PANi–TiO2 (0–50%) sensor films were characterized for their structural, morphological, optical, and various gas-sensing properties. The structural analysis showed the formation of nanocrystalline TiO2, whereas PANi exhibited an amorphous nature. Morphological analysis of the PANi–TiO2 nanocomposites film revealed a uniform distribution of TiO2 nanoparticles in the PANi matrix. The absorption peaks in the Fourier transform infrared spectra and ultraviolet–visible spectra of the PANi–TiO2 composite film were found to shift to higher wave numbers compared to those observed in pure PANi. The observed shifts were attributed to the interaction between the TiO2 particles and the PANi molecular chains. The gas-sensing properties showed that the sensors exhibited selectivity to ammonia (NH3) at room temperature. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
Camphor sulfonic acid (CSA) doped polyaniline/CdS nanohybrid materials were prepared by chemical oxidative polymerization method and characterized by field emission scanning electron microscopy (FESEM) and Fourier transform infrared (FTIR) spectroscopy. It is proved that there is a strong synergetic interaction between the CSA and polyaniline–CdS nanohybrid. Gas sensing measurements showed that the gas sensor based on the CSA doped PANi–CdS nanohybrid had high sensor response (75%), good selectivity (for H2S) and stability (97.34%), as well as comparatively short recovery time to H2S, operating at room temperature. The enhanced gas sensing performance of the nanohybrid is due to the high surface area of the CSA doped PANi–CdS hybrids and the p–n heterojunction formed between p-type polyaniline and n-type CdS nanoparticles.  相似文献   

10.
Composite films from polyaniline (PANi) and polyurethane (PU), with flexibility and mechanical strength similar to pure PU and conductivity close to pure PANi, have been obtained by electropolymerizing amiline on a PU/Pt electrode in water/acetonitrile/ethylen glycol electrolyte solution. In the composite films, PANi is dispersed, in the form of particulate, inside and on the inner surface of the PU substrates. It is found that the electropolymerization reaction of aniline proceeds much faster in basic solution and composite film as prepared shows higher conductivity than that in acidic solution. PANi in PU/PANi composite film is protonic-acid-doped and is conducting even in case it is electropolymerized in a basic electrolyte solution.  相似文献   

11.
The preparation of polyaniline (PANi)-cellulose acetate (CA) blends by casting films from a suspension, is reported. Two membranes were prepared from different solvents, one with a homogeneous and the other a heterogeneous dispersion of PANi in CA matrices. The membranes were characterized by X-ray diffraction, SEM, DSC, and FTIR, and the results were compared with those obtained for pure CA and PANi films. The transport properties of water and sodium dodecyl sulfate (SDS) in membranes of the PANi-CA blends and of CA were analysed. The transport of SDS and water depends on both the bulk/polymer density and the PANi content. In the homogeneous blend, the interaction between SDS and the polymer plays an important role in the transport mechanism. An irreversible interaction is observed, which can be monitored by UV-vis spectroscopy. The spectra of homogeneous, highly transparent PANi-CA blends show a pronounced sensitivity to SDS concentration, with detection limits [SDS]≥0.1 mM for films with a PANi concentration of 0.05% w/v.  相似文献   

12.
Due to the strict regulations on the usage of heavy metals as the additives in the coating industries, the search for effective organic corrosion inhibitors in replacement of metal additives has become essential. Electrically conducting polymers have been shown to be effective for corrosion prevention, but the poor solubility of these intractable polymers has been a problem. We have explored a polyaniline–4-dodecylphenol complex (PANi–DDPh) to improve the dissolution, and it has been shown to be an effective organic corrosion inhibitor. With the surfactant, DDPh, PANi could be diluted into the coatings, and the properties of the coatings were affected. An emeraldine base (EB) form of PANi was also found to be oxidized by the hardener. The oxidized form of polyaniline provides improved corrosion protection of metals than that of emeraldine base since the value of the standard electrode potential for the oxidized form of PANi is higher than that of EB. Additionally, the surfactant improves the wet adhesion property between the coating and the metal surface. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2849–2856, 1999  相似文献   

13.
Liu J  Sun J  Gao L 《Nanoscale》2011,3(9):3616-3619
Flexible single-walled carbon nanotubes/polyaniline (SWNT/PANi) composite films with enhanced thermoelectric properties were prepared via a simple method. Furthermore, these paper-like composite films show good flexibility, which makes them possible to be widely applied in various flexible energy converter devices.  相似文献   

14.
Langmuir-Blodgett (LB) films from a ruthenium complex, mer-[RuCl3(dppb)(py)] (dppb=PPh2(CH2)4PPh2; py=pyridine) (Rupy), and from mixtures with varied amounts of polyaniline (PANi) were fabricated. Molecular-level interactions between the two components are investigated by surface potential, dc conductivity and Raman spectroscopy measurements, particularly for the mixed film with 10% of Rupy. For the latter, the better miscibility led to an interaction with Rupy inducing a decrease in the conducting state of PANi, as observed in the Raman spectra and conductivity measurement. The interaction causes the final film properties to depend on the concentration of Rupy, and this was exploited to produce a sensor array made up of sensing units consisting of 11-layer LB films from pure PANi, pure Rupy and mixtures with 10 and 30% of Rupy. It is shown that the combination of only four non-specific sensing units allows one to distinguish the basic tastes detected by biological systems, viz. saltiness, sweetness, sourness and bitterness, at the μM level.  相似文献   

15.
A new conducting copolymer, polyacrylonitrile‐graft‐polyaniline (PAN‐g‐PANi), has been prepared by chemical and electrochemical methods from a precursor polymer. Poly[acrylonitrile‐co‐(acrylimine phenylenediamine)] (PAN‐co‐PAIPD) was synthesized chemically by reacting PAN with sodium 1,4‐phenylenediamine salt. PAN‐g‐PANi was synthesized chemically using ammonium peroxydisulfate as the oxidant and p‐toluenesulfonic acid in dimethylsulfoxide solution and adding aniline to oxidized PAN‐co‐PAIPD. Electrochemical polymerization was carried out by spin coating PAN‐co‐PAIPD on the surface of a Pt electrode, then the growth of the graft copolymer (PAN‐g‐PANi) in the presence of fresh aniline and acidic solution. The structures of the graft copolymer and PAN‐co‐PAIPD were characterized using UV‐visible, Fourier transform infrared, and 1H and 13C NMR spectroscopies. The thermal properties of PAN‐g‐PANi were studied using thermogravimetric analysis and differential scanning calorimetry. Scanning electron microscopy (SEM) images showed that the morphology of PAN‐g‐PANi copolymer films was homogeneous. Electrical conductivity of the copolymer was studied using the four‐probe method, which gave a conductivity of 4.5 × 10?3 S cm?1 with 51.4% PANi. SEM and electrical conductivity measurements supported the formation of the graft copolymer. Copyright © 2006 Society of Chemical Industry  相似文献   

16.
Organic thermoelectric materials based on conducting polymers, especially for polyaniline (PANi) and poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), have attracted great concern due to their tunable electron transport properties by controlling doping level. Here, the solvent effects of deionized H2O and NH3·H2O were investigated on the electrical conductivity and Seebeck coefficient of PANi/PEDOT/PSS composite films. The introduction of PEDOT/PSS can not only effectively improve the quality of pure PANi film, but also enhance the electrical conductivity of PANi film. The different volumes of deionized H2O as dilution have a great influence on the electrical conductivity of PANi/PEDOT/PSS composite thin film with a maximum electrical conductivity value of 63.5 S cm?1, which is much higher than pure PANi and pristine PEDOT/PSS. The introduction of NH3·H2O shows a positive effect on Seebeck coefficient with a large decline on electrical conductivity of PANi/PEDOT/PSS. The Raman spectroscopy, scanning electron microscopy (SEM), and UV-vis spectroscopy were used to obtain the morphology and structure information of PANi/PEDOT/PSS.  相似文献   

17.
Remediation of hexavalent chromium - Cr(VI) at acidic pH using polyaniline coated bacterial cellulose porous mat (BC/PANi) is presented and the possible mechanism is discussed. The efficacy of BC/PANi mats in remediation of Cr(VI) was studied by varying pH (pH 1, 2, 3, and 5) and initial Cr(VI) concentrations (250–1000 ppm) of the solution. The BC/PANi (50 mg) mat was able to completely reduce 2000 ppm Cr(VI) into Cr(III) in a 20 ml solution at pH ~ 1 in 24 h. An increasing chromium removal efficiency was observed with decreasing solution pH; reaching a maximum removal capacity of ~920 mg/g at pH 1. The proposed mechanism of negatively charged Cr(VI) ions removal by BC/PANi mat is adsorption and simultaneous reduction into Cr(III), followed by desorption of Cr(III) from the mat. The role of temperature and co-existing anions like sulphate, nitrate and chloride found in industrial sludge were also investigated for removal efficiency of Cr(VI) at acidic pH ~ 1. The adsorption kinetics of Cr(VI) on polyaniline surface followed a pseudo-second-order model with reduction of Cr(VI) into Cr(III) as rate-limiting step. The reduced Cr(III) from the media was further recovered by neutralizing the pH of the solution.  相似文献   

18.
Yunxing Li  Chunjian Wang  Gi Xue 《Polymer》2011,52(2):409-414
By means of the “Swelling-Diffusion-Interfacial-Polymerization Method” (SDIPM), we successfully coated polyaniline (PANi) onto micrometre-size, uncharged polystyrene (PS) particles, which were synthesized by dispersion polymerization. After initially forming aniline-swollen PS particles, diffusion of the aniline toward the aqueous phase was controlled through a slow addition of hydrochloric acid, eventually leading to its polymerization on the substrate particle surface. The resultant PS/PANi composite particles have been extensively characterized using scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared (FTIR) and Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and C, H, and N elemental microanalysis. At very low aniline/PS weight ratio, the thin, uniform, but intact PANi overlayer was obtained owing to its unique “inside-out” formation mechanism and considerably high efficiency of aniline to transform into the resultant composites. As increasing the initial amount of addition of aniline, the uniform size and well-defined morphology of the PS/PANi core-shell composite particles could still be maintained with a relatively high PANi mass loading yield.  相似文献   

19.
Nano‐sized particles of Zinc oxide (ZnO) were synthesized using a new chemical rout. The chemical oxidative polymerization of aniline in the presence of nano ZnO was employed to synthesize a polyaniline‐zinc oxide (PANI‐ZnO) nanocomposite. The material was characterized by using transmission electron microscopy, XRD, scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), and Thermogravimetric analysis (TGA). The conductivity measurements showed the resulting composites possessed higher conductivity as compared to pure polyaniline (PANI). The nanocomposite exhibited fairly sensitive towards solution of aqueous ammonia (NH3), when it was exposed to various concentrations of NH3 in an ambient room temperature. The results show that the sensor has good sensitivity and good repeatability upon repeated exposure to NH3. PANI‐ZnO nanocomposite was also used to study electrical conductivity under isothermal conditions in the temperature range 50–130°C. The composite was found stable under ambient conditions below 90°C in terms of DC electrical conductivity retention. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Bo Gao 《Electrochimica acta》2010,55(7):2311-9232
Nanocomposite of benzenesulfonic functionalized multi-walled carbon nanotubes doped polyaniline (PANi/f-MWCNTs) was synthesized via a low-temperature in situ polymerization method. The PANi/f-MWCNTs composite has a thin film of PANi coating uniformly on the surface of the f-MWCNTs. The electrochemical results show that PANi/f-MWCNTs nanocomposite possesses good rate response, which could ascribe to the uniform structure and the better conductivity of composite as well as the in situ doping/de-doping process between the benzenesulfonic acid groups of f-MWCNTs and PANi chain. In addition, the composite also has better capacity and cyclability than PANi/p-MWCNTs composite. It could attribute to the presence of f-MWCNTs, which makes more electrolyte contact with PANi to participate in faradaic redox reactions and dopes with the PANi polymer chain through the benzenesulfonic acid groups to form stable polyemeraldine salts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号