首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
基于词频的优化互信息文本特征选择方法   总被引:1,自引:0,他引:1  
互信息(MI)是一种常用的文本特征选择方法,经典MI方法未考虑同一个特征项在不同类别内频数的差异性,也未考虑同一个特征在同一类别内的不同文本之间分布上的差异性。针对上述不足,以特征项的频数为依据,分别从特征项的类内分布、类间分布上的差异以及类内不同文本之间分布上的差异等角度,通过引入特征项的类内频数因子、类内位置分布因子以及类间分布因子,提出一种改进的MI文本特征选择方法,使得特征项的频数信息在MI模型中得到有效利用,合理改善互信息模型在文本特征选择方面的不足。文本分类实验结果表明,改进MI文本特征选择方法的平均准确率、召回率分别提高约5.2%及4.6%,平均综合评价指标值提高约4.9%,有效提高了模型的文本分类效率。  相似文献   

2.
CHI是一种常用的文本特征选择方法。针对该模型的不足之处,以特征项的频数为依据,分别从特征项的类内分布、类间分布以及类内不同文本之间分布等角度,对CHI模型进行逐步优化,使得特征项频数信息得到了有效利用。提出了一种基于词频信息的改进CHI模型。随后的文本分类试验证明了提出优化CHI模型的有效性。  相似文献   

3.
论文提出了一种基于信息增益改进的信息增益文本特征选择方法.首先对数据集按类进行特征选择,减少数据集不平衡性对特征选取的影响.其次运用特征出现概率计算信息增益权值,降低低频词对特征选择的干扰.最后使用离散度分析特征在每类中的信息增益值,过滤掉高频词中的相对冗余特征,并对选取的特征应用信息增益差值做进一步细化,获取均匀精确的特征子集.通过对照不同算法的测评函数值,表明论文选取的特征子集具有更好的分类能力.  相似文献   

4.
石慧  贾代平  苗培 《计算机应用》2014,34(11):3279-3282
为克服传统信息增益(IG)算法对特征项的频数考虑不足的缺陷,在对传统算法和相关改进算法深入分析的基础上,提出一种基于词频信息的改进的IG文本特征选择算法。分别从特征项在类内出现的频数、类内位置分布、不同类间的分布等方面对传统IG算法的参数进行了修正,使特征频数信息得到充分利用。对文本分类的实验结果表明,所提算法的分类精度明显高于传统IG算法和加权的IG改进算法。  相似文献   

5.
通过分析特征词与类别间的相关性,在原有卡方特征选择和信息增益特征选择的基础上提出了两个参数,使得选出的特征词集中分布在某一特定类,并且使特征词在这一类中出现的次数尽可能地多;最后集合CHI与IG两种算法得到一种集合特征选择方法(CCIF)。通过实验对比传统的卡方特征选择、信息增益和CCIF方法,CCIF方法使得算法的微平均查准率得到了明显的提高。  相似文献   

6.
分析了传统信息增益(IG)特征选择方法忽略了特征项在类间、类内分布信息的缺点,引入类内分散度、类间集中度等因素,区分与类强相关的特征;针对传统信息增益(IG)特征选择方法没有很好组合正相关特征和负相关特征的问题,引入比例因子来平衡特征出现和不出现时的信息量,降低在不平衡语料集上负相关特征的比例,提高分类效果.通过实验证明了改进的信息增益特征选择方法的有效性和可行性.  相似文献   

7.
《软件工程师》2017,(12):19-22
IG算法是一种有效的特征选择算法,在文本分类研究领域中得到了广泛应用。本文针对IG算法的不足,提出了一种基于词频信息的改进方法,分别从类内词频信息、类内词频位置分布、类间词频信息等方面进行了改进。通过实验对改进的算法进行了测试,结果表明,改进的算法相对传统算法更有效。  相似文献   

8.
基于最小词频阈值的文档特征选择   总被引:2,自引:0,他引:2  
为降低内容无关的特征词对文本分类系统的影响,在对与文本内容无关的特征词进行分析后发现:不相关特征词的词频普遍较低,利用最小词频阈值滤除低频特征可以明显降低无关特征的数量.为此,提出基于最小词频阈值的文档频评估函数.利用该函数选择特征可以有效减少与内容无关的噪声特征,改善分类质量.实验结果显示,几种基于最小词频阈值的文档频评估函数比基于普通文档频的评估函数的分类准确性有不同程度的改进,其中对互信息的改进最为显著,宏平均F1值比词频方法提高40%,比普通文档频方法提高15%~30%.  相似文献   

9.
一种基于聚类的文本特征选择方法   总被引:6,自引:0,他引:6  
传统的文本特征选择方法存在一个共性,即通过某种评价函数分别计算单个特征对类别的区分能力,由于没有考虑特征间的关联性,这些方法选择的特征集往往存在着冗余。针对这一问题,提出了一种基于聚类的特征选择方法,先使用聚类的方法对特征间的冗余性进行裁减,然后使用信息增益的方法选取类别区分能力强的特征。实验结果表明,这种基于聚类的特征选择方法使得文本分类的正确性得到了有效的提高。  相似文献   

10.
特征选择算法对文本分类系统的精确度有很大影响,传统的信息增益特征选择算法通常会导致在指定类别中很少出现而在其他类别中频繁出现的特征被选择出来。为克服这一缺陷,在对传统算法和相关改进算法深入分析的基础上,引入特征分布差异因子、类内和类间加权因子的改进思路,提出一种基于特征分布加权的信息增益改进算法,并分别采用朴素贝叶斯和支持向量机两种分类算法进行实验。实验结果表明,该算法优于其他改进算法。  相似文献   

11.
一种改进的文本分类特征选择方法   总被引:1,自引:0,他引:1       下载免费PDF全文
文本分类中特征空间的高维问题是文本分类的主要障碍之一。特征选择(Feature Selection)是一种有效的特征降维方法。现有的特征选择函数主要有文档频率(DF),信息增益(IG),互信息(MI)等。基于特征的基本约束条件以及高性能特征选择方法的设计步骤,提出了一种改进的特征选择方法SIG。该特征选择方法在保证分类效果的同时,提高了对中低频特征的偏向。在语料集Reuters-21578上的实验证明,该方法能够获得较好的分类效果,同时有效提高了对具有强分类能力的中低频特征的利用。  相似文献   

12.
基于词频差异的特征选取及改进的TF-IDF公式   总被引:18,自引:2,他引:18  
罗欣  夏德麟  晏蒲柳 《计算机应用》2005,25(9):2031-2033
文档向量化的质量对于文本分类的速度和准确度有着很大的影响。对文档向量化中常用的TF-IDF公式,互信息量公式以及信息增益公式进行了分析。提出一种基于词频差异的特征选取方法和改进的TF-IDF公式,以提高特征选取质量和文本分类的速度及准确度。  相似文献   

13.
特征选择是维吾尔语文本分类的关键技术,对分类结果将产生直接的影响。为了提高传统信息增益在维吾尔文特征选择中的效果,在深度分析维吾尔文语种特点的基础上,提出了一种新的信息增益特征选择方法。该方法结合类词频和特征分布系数以及倒逆文档频率,对传统信息增益进行修正;引入一个备选特征分布系数来平衡类间选取的特征个数;在维吾尔文数据集上实验验证。实验结果表明,改进的算法对维吾尔文分类效果有明显的提高。  相似文献   

14.
一种改进的基于条件互信息的特征选择算法   总被引:10,自引:0,他引:10  
目前在文本分类领域较常用到的特征选择算法中,仅仅考虑了特征与类别之间的关联性,而对特征与特征之间的关联性没有予以足够的重视,这导致了特征之间预测能力的相互削弱,无法选出最有效的特征。提出了一种新的用于文本分类的特征选择算法(CMIM),它可以帮助选出区分能力强、弱相关的特征。经实验验证,CMIM比传统的特征选择算法具有更好的性能。  相似文献   

15.
基于分形维数的属性约简算法与特征辨别能力相结合,提出了一个综合的特征选择方法.该方法利用特征辨别能力进行特征初选,过滤掉一些词条来降低特征空间的稀疏性,以利用所提约简算法消除冗余,从而获得较具代表性的特征子集.实验结果表明,此种特征选择方法效果良好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号