首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural rubber is reinforced with untreated coir fiber chopped to different lengths, viz., 6, 10, and 14 mm. Mixes were also prepared using 10 mm-long coir fibers treated with 5% sodium hydroxide solution for different time intervals, viz., 4, 24, 48, and 72 h. These composites were vulcanized at 150°C. The vulcanization parameters, processability characteristics, and stress–strain properties of these composites were analyzed. The rubbercoir interface bonding was improved by the addition of a resorcinol–hexamethylenetetramine dry-bonding system. The reinforcing property of the alkali-treated fiber was compared with that of the untreated one. The extent of fiber orientation in the composite was determined from green strength measurements. From anisotropic swelling studies, the extent of fiber alignment and the strength of fiber–rubber interface adhesion were analyzed. Scanning electron microscopic studies were carried out to investigate the fiber surface morphology, fiber pullout, and fiber–rubber interface. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
Natural rubber was reinforced with untreated sisal and oil palm fibers chopped to different fiber lengths. The influence of fiber length on the mechanical properties of the hybrid composites was determined. Increasing the fiber length resulted in a decrease in the properties. The effects of concentration on the rubber composites reinforced with sisal/oil palm hybrid fibers were studied. Increasing the concentration of fibers resulted in a reduction in the tensile strength properties and tear strength but an increase in the modulus of the composites. Fiber breakage analysis was evaluated. The vulcanization parameters, processability characteristics, and stress–strain properties of these composites were analyzed. The extent of fiber alignment and the strength of the fiber–rubber interface adhesion were analyzed from the anisotropic swelling measurements. Scanning electron microscopy studies were performed to analyze the fiber/matrix interactions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2305–2312, 2004  相似文献   

3.
Styrene-butadiene rubber (SBR) composites were prepared by incorporating short sisal fibers of different lengths and concentrations into the SBR matrix in a mixing mill according to a base formulation. The curing characteristics of the mixes were studied and the samples were vulcanized at 150°C. The properties of the vulcanizates such as stress-strain behavior, tensile strength, modulus, shore-A hardness, and resilience were studied. Both the cured and uncured properties showed a remarkable anisotropy. It has been found that aspect ratio in the range of 20–60 is effective for sufficient reinforcement. The mechanical properties were found to increase along and across the grain direction with the addition of fibers. The effects of fiber length, orientation, loading, type of bonding agent, and fiber-matrix interaction on the properties of the composites were evaluated. The extent of fiber orientation was estimated from green strength measurements. The adhesion between the fiber and the rubber was enhanced by the addition of a dry bonding system consisting of resorcinol and hexamethylene tetramine. The bonding agent provided shorter curing time and enhanced mechanical properties. The tensile fracture surfaces of the samples have been examined by scanning electron microscopy (SEM) to analyze the fiber surface morphology, orientation, fiber pull-out, and fiber-matrix interfacial adhesion. Finally, anisotropic swelling studies were carried out to analyze the fiber-matrix interaction and fiber orientation. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
The present work focuses on the effect of concentration and modifications of oil palm microfibrils in natural rubber. Increase in the concentration of microfibrils resulted in the reduction of tensile and tear strengths while an increase in modulus, hardness, and abrasion resistance of composites. The extent of microfibril orientation in the composite was determined from green strength measurements. Microcomposites were also prepared by using fibrils treated with benzoyl chloride, silane coupling agent, and hydrated silica‐resorcinol‐hexamethylenetetramine bonding agent. The treated and untreated microfibrils were characterized by FTIR. Scanning electron micrograph studies were carried out to analyze the microfibril pull out and fiber/matrix adhesion of composites. The extent of fiber alignment and interfacial adhesion were analyzed from swelling measurements. Finally, experimental results of mechanical properties were compared with the theoretical predictions. POLYM. ENG. SCI., 50:1853–1863, 2010. © 2010 Society of Plastics Engineers  相似文献   

5.
Composites of natural rubber (NR) and short pineapple leaf fiber (PALF) were prepared on a laboratory two‐roll mill. The influences of untreated fiber content and orientation on the processing and mechanical properties of the composites were investigated. The dependence of extent of orientation on fiber concentration was also established. Sodium hydroxide (NaOH) solutions (1, 3, 5, and 7% w/v) and benzoyl peroxide (BPO) (1, 3, and 5 wt % of fiber) were used to treat the surfaces of PALFs. FTIR and scanning electron microscope (SEM) observations were made of the treatments in terms of chemical composition and surface structure. The tensile strength and elongation at break of the composites were later studied. The fiber–matrix adhesion was also investigated using SEM technique. It was found that all surface modifications enhanced adhesion and tensile properties. The treatments with 5% NaOH and 1% BPO provided the best improvement of composite strength (28 and 57% respectively) when compared with that of untreated fiber. The PALF‐NR composites also exhibited better resistance to aging than its gum vulcanizate, especially when combined with the treated fibers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1974–1984, 2006  相似文献   

6.
To improve adhesion between fiber and matrix, natural rubber was reinforced with a special type of alkali‐treated grass fiber (Cyperus Tegetum Rox b). The cure characteristics and mechanical properties of grass‐fiber‐filled natural rubber composites with different mesh sizes were studied with various fiber loadings. Increasing the amount of fibers resulted in the composites having reduced tensile strength but increased modulus. The better mechanical properties of the 400‐mesh grass‐fiber‐filled natural rubber composite showed that the rubber/fiber interface was improved by the addition of resorcinol formaldehyde latex (RFL) as bonding agent for this particular formulation. The optimum cure time decreased with increases in fiber loading, but there was no appreciable change in scorch time. Although the optimum cure time of vulcanizates having RFL‐treated fibers was higher than that of the other vulcanizates, it decreased with fiber loading in the presence of RFL as the bonding agent. But this value was lower than that of the rubber composite without RFL. Investigation of equilibrium swelling in a hydrocarbon solvent was also carried out. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3151–3160, 2006  相似文献   

7.
The effect of carbon black on the processing characteristics and physical properties of jute fiber-reinforced composites and the role of silica and carbon black in promoting the adhesion between jute fiber and natural rubber have been studied. It was found that presence of silica is not essential to develop adhesion between fiber and rubber in the presence of carbon black. However, silica and carbon black can improve adhesion by minimizing the resin formation and controlling it to a low molecular weight species. Processing properties like green strength and mill shrinkage are improved by the addition of fiber. Carbon black does not affect mill shrinkage, but improves the green strength. Breakage of jute fiber during mixing is severe, but the extent of breakage is not affected by the presence of carbon black. The minimum loading of fiber to achieve reinforcement is reduced in the presence of carbon black. It was also found that the presence of clay in jute fiber rubber composites impairs the properties. Scanning electron microscopy (SEM) has been used to assess the failure criteria.  相似文献   

8.
Acrylonitrile butadiene rubber (NBR)‐based composites were prepared by incorporating short nylon fibers of different lengths and concentration into the matrix using a two‐roll mixing mill according to a base formulation. The curing characteristics of the samples were studied. The influence of fiber length, loading, and rubber crosslinking systems on the properties of the composites was analyzed. Surface morphology of the composites has been studied using Scanning Electron Microscopy (SEM). Addition of nylon fiber to NBR offers good reinforcement, and causes improvement in mechanical properties. A fiber length of 6 mm was found to be optimum for the best balance of properties. It has been found that at higher fiber loadings, composites show brittle‐type behavior. Composites vulcanized by the dicumyl peroxide (DCP) system were found to have better mechanical properties than that by the sulfur system. The swelling behavior of the composites in N,N‐dimethyl formamide has been analyzed for the swelling coefficient values. Composites vulcanized in the DCP system were found to have higher rubber volume fraction than that in the sulfur system, which indicates better rubber–fiber interaction in the former. The crosslink densities of various composites were also compared. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1023–1030, 2004  相似文献   

9.
Composites made from ground tire rubber (GTR) and waste fiber produced in tire reclamation were prepared by mechanical milling. The effects of the fiber content, pan milling, and fiber orientation on the mechanical properties of the composites were investigated. The results showed that the stress‐induced mechanochemical devulcanization of waste rubber and the reinforcement of devulcanized waste rubber with waste‐tire fibers could be achieved through comilling. For a comilled system, the tensile strength and elongation at break of revulcanized GTR/fiber composites reached maximum values of 9.6 MPa and 215.9%, respectively, with 5 wt % fiber. Compared with those of a composite prepared in a conventional mixing manner, the mechanical properties were greatly improved by comilling. Oxygen‐containing groups on the surface of GTR particles, which were produced during pan milling, increased interfacial interactions between GTR and waste fibers. The fiber‐filled composites showed anisotropy in the stress–strain properties because of preferential orientation of the short fibers along the roll‐milling direction (longitudinal), and the adhesion between the fiber and rubber matrix was improved by the comilling of the fiber with waste rubber. The proposed process provides an economical and ecologically sound method for tire‐rubber recycling. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 4087–4094, 2007  相似文献   

10.
Processing characteristics, anistropic swelling, and mechanical properties of short-jute-fiber-and short-glass-fiber-reinforced styrene–butadiene rubber (SBR) composites have been studied both in the presence and absence of carbon black. Tensile and tear fracture surfaces of the composites have been studied using scanning electron microscopy (SEM) in order to assess the failure criteria. The effects of bonding agent. carbon black, jute fiber, and glass fiber on the fracture mode of the composites have also been studied. It has been found that jute fiber offers good reinforcement to SBR as compared to glass fibers. The poor performance of glass fibers as reinforcing agent is found to be mainly due to fiber breakage and poor bonding between fiber and rubber. Tensile strength of the fiber–SBR composites increases with the increase in fiber loading in the absence of carbon black. However, in the presence of carbon black a minimum was observed in the variation of strength against fiber loading. SEM studies indicate that fracture mode depends not on the nature of the fiber but on the adhesion between the fiber and the matrix.  相似文献   

11.
Different short fibers (glass, carbon, cellulose, polyamide, and polyester with aspect, length/diameter, ratio of 600, 860, 500, 83, and 330 respectively) were added to styrene-butadiene rubber (SBR) matrix filled with an inorganic semireinforcing mineral (sepiolite). In all cases, 18 parts by volume of fiber per 100 parts by mass of rubber were added. The fiber orientation attained (more than 60%) was evaluated by a ratio of directional mechanics on uncured samples. In glass and carbon fiber composites, because of decreases in fiber aspect ratio after mixing (10 and 35 respectively), no improvements in properties were obtained. The presence of fibers yields a large increase in green strength, stress at low strain, and tear strength. Logically, the elongation at break diminishes. The uncured and cured properties present a remarkable anisotropy. The adhesive employed (resorcinol-formaldehyde) to increase fiber-to-matrix adhesion enhanced the composite properties, especially in the case of polyester fiber composites. Thus, for polyester fiber composites, green strength became 15.85 kg/cm2; stress at 25% strain, 10.2 MPa; tensile strength, 6.3 MPa; elongation at break, 36%; tear strength, 70 N; and swelling in longitudinal direction, 1.06.  相似文献   

12.
The alteration in some properties of electron beam (EB) cured ethylene-propylene diene rubber (EPDM) reinforced by polyethylene terephthalate (PET) fiber was investigated in this study. Bonding system Resorcinol/Hexamethylenetetramine/Silica (RHS) was used to enhance the fiber/EPDM adhesion and to maintain optimum composite strength properties. Mechanical properties of composites namely; tensile strength, hardness and modulus at 100 % elongation have been enhanced by adding PET fibers and increasing irradiation dose. Moreover, the effect of fiber loading and irradiation dose on the soluble fraction behavior of the composite in benzene was also investigated. The soluble fraction of the composites decreased with increasing the fiber loading and irradiation dose. The extent of fiber alignment and strength of fiber-rubber interface adhesion were analyzed from the anisotropic swelling measurements. In addition, thermal stability of the composites was increased. Besides, the mechanical properties like tensile strength and stiffness were improved by thermal ageing. Scanning electron microscopy (SEM) for the fractured surfaces and Wide- angle X- ray diffraction (WAXD) of the investigated samples confirmed that the adhesion occurred between fibers and EPDM.  相似文献   

13.
This experimental study evaluated the water absorption characteristics of pineapple leaf fiber (PALF)–polyester composites of different fiber content. The degree of water absorption was found to increase with fiber loading. The mechanism of diffusion was analyzed and the effect of fiber loading on the sorption kinetics was studied. The diffusion coefficient was calculated and found to increase with fiber content. Studies were also made to correlate water absorption with the cross‐sectional areas of the specimens. The effects of ageing on the tensile properties and dimensional stability of PALF polyester composites were studied under two different ageing conditions. Ageing studies showed a decrease in tensile strength of the composites. The composite specimens subjected to thermal ageing showed only a slight deterioration in strength. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 503–510, 2004  相似文献   

14.
The tensile properties of polystyrene reinforced with short sisal fiber and benzoylated sisal fiber were studied. The influence of fiber length, fiber content, fiber orientation, and ben-zoylation of the fiber on the tensile properties of the composite were evaluated. The ben-zoylation of the fiber improves the adhesion of the fiber to the polystyrene matrix. the benzoylated fiber was analyzed by IR spectroscopy. Experimental results indicate a better compatibility between benzoylated fiber and polystyrene. the benzoylation of the sisal fiber was found to enhance the tensile properties of the resulting composite. The tensile properties of unidirectionally aligned composites show a gradual increase with fiber content and a leveling off beyond 20% fiber loading. The properties were found to be almost independent of fiber length although the ultimate tensile strength shows marginal improvement at 10 mm fiber length. The thermal properties of the composites were analyzed by differential scanning calorimetry. Scanning electron microscopy was used to investigate the fiber surface, fiber pullout, and fiber–matrix interface. Theoretical models have been used to fit the experimental mechanical data. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
Textile–rubber biocomposites were prepared by the reinforcement of natural rubber with woven sisal fabric. The viscoelastic properties of the composites were analyzed at different frequencies. Sisal fabric was subjected to different chemical modifications, such as mercerization, silanation, and thermal treatment, and the influences of the modifications on the dynamic mechanical properties were analyzed. The storage modulus was found to increase with reinforcement of natural rubber with woven sisal fabric. The chemical modification of the sisal fabric resulted in a decrease in the storage modulus. The damping factor was found to decrease with chemical treatment, and the gum compound exhibited maximum damping characteristics. The thermal stabilities of the composites were also analyzed by thermogravimetric studies. Scanning electron microscopy studies were performed to evaluate the morphology of the fabric–matrix interface.© 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
The effect of a two-component dry bonding system consisting of resorcinol and hexamethylene tetramine on the mechanical and viscoelastic properties of short sisal fiber reinforced natural rubber composites has been studied. The studies were conducted with chemically treated and untreated short sisal fibers. Treated fibers impart better mechanical properties to the composites. By mixing with short fibers, the dynamic storage modulus (E') of natural rubber composites was improved. The effects of fiber-matrix adhesion on the mechanical and viscoelastic properties of the composites were investigated. The storage moduli and mechanical loss increased continuously with an increase in fiber loading but decreased with an increase of temperature. The influence of the fiber orientation on the mechanical and viscoelastic properties is discussed.  相似文献   

17.
《Polymer Composites》2017,38(5):837-845
Green composites, a bio‐based polymer matrix is reinforced by natural fibers, are special class of bio‐composites. Interest about green composites is continuously growing because they are environment‐friendly. This study describes the preparation and mechanical characterization of green composites using polylactic acid (PLA) matrix including chicken feather fiber (CFF) as reinforcement. Extrusion and an injection molding process were used to prepare CFF/PLA composites at a controlled temperature range. CFF/PLA composites with fiber mass content of 2%, 5%, and 10% were manufactured. The effects of fiber concentration and fiber length on mechanical properties of CFF/PLA composites have been studied. Mechanical properties of composites were investigated by tensile, compression, bending, hardness, and Izod impact testing. The results of experiments indicated that Young's modulus, compressive strength, flexural modulus, and hardness of the PLA reinforced CFF composites are higher but tensile strength, elongation at break, bending strength and impact strength of them are lower than pure PLA. The results indicate that these types of composites can be used for various applications. POLYM. COMPOS., 38:837–845, 2017. © 2015 Society of Plastics Engineers  相似文献   

18.
The mechanical properties, heat aging resistance, dynamic properties, and abrasion resistance of fibrillar silicate (FS)/styrene butadiene rubber (SBR) nanocomposites are discussed in detail. Compared with white carbon black (WCB)/SBR composites, FS/SBR composites exhibit higher tensile stress at definite strain, higher tear strength, and lower elongation at break but poor abrasion resistance and tensile strength. Surprisingly, FS/SBR compounds have better flow properties. This is because by rubber melt blending modified FS can be separated into numerous nanosized fibrils under mechanical shear. Moreover, the composites show visible anisotropy due to the orientation of nanofibrils. There is potential for FS to be used to some extent as a reinforcing agent for rubber instead of short microfibers or white carbon black. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2725–2731, 2006  相似文献   

19.
Silica has been established as one of the most promising materials in green tires. The filler–rubber interactions can increase the comprehensive performance of rubber composites. In this study, sodium silicate was used as the silicon source and hexamethyl disilazane (HMDS; molecular formula: C6H19NSi2) was used as a modifier to synthesize dispersible silica (DNS) via an in situ surface-modification method. The effects of the HMDS-capped silica on the properties of rubber–matrix composites made of styrene–butadiene rubber (SBR) and high-cis-polybutadiene rubber (BR9000 or BR) were investigated with Zeosil 1165MP (Z1165-MP; a commercial highly dispersible silica produced by Rhodia for the production of green tires in the rubber industry) as a reference. The results show that the SBR–BR–DNS composite was before the SBR–BR–Z1165-MP composite in increasing the tear strength and elongation at break and reducing the compression heat buildup. On the basis of the resulting properties, the reinforcing behaviors in the rubber–matrix composites were analyzed. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47763.  相似文献   

20.
Two kinds of polyhedral oligomeric silsesquioxane (POSS) coatings were used for the modification of the interface in carbon fiber (CF) reinforced polyarylacetylene (PAA) matrix composites. The effects of the organic–inorganic hybrid POSS coatings on the properties of the composites were studied with short‐beam‐bending, microdebonding, and impact tests. The interlaminar shear strength and interfacial shear strength showed that the POSS coatings resulted in an interfacial property improvement for the CF/PAA composites in comparison with the untreated ones. The impact‐test results implied that the impact properties of the POSS‐coating‐treated composites were improved. The stiffness of the interface created by the POSS coatings was larger than that of the fiber and matrix in the CF/PAA composites according to the force‐modulation‐mode atomic force microscopy test results. The rigid POSS interlayer in the composites enhanced the interfacial mechanical properties with a simultaneous improvement of the impact properties; this was an interesting phenomenon in the composite‐interface modification. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5202–5211, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号