共查询到20条相似文献,搜索用时 109 毫秒
1.
《计算机应用与软件》2014,(7)
针对Gabor特征维数高难题,提高光照人脸的识别性能,提出一种基于Gabor特征融合和最小二支持向量机的人脸识别算法(Gabor-LSSVM)。首先采用Gabor滤波器提取人脸图像的多尺度和多方向特征,并将相同尺度不同方向的特征融合,初步降低特征维数;然后采用核主成分分析对融合特征进行选择,进一步降低特征维数;最后采用最小支持向量机建立分类器对人脸进行识别,并采用Yale B和PIE人脸库进行仿真测试。结果表明Gabor-LSSVM的人脸识别正确率和识别效率都得到了提高。 相似文献
2.
提出了一种利用所提取的彩色Gabor特征来提高人脸识别系统性能的方法。首先利用四元数表示彩色信息,考虑到Gabor滤波器具有空间局部性和方向选择性的特点,将其扩展到四元数空间。然后通过人脸图像特征点与Gabor滤波器的卷积来提取特征,这样就将传统的灰度Gabor特征拓展为彩色Gabor特征。最后对于所提取的特征利用PCA降维后送入支持向量机中分类。实验采用彩色FERET人脸库并利用ROC曲线进行交叉检验,结果说明通过提取和利用这种彩色纹理信息能显著提高人脸识别系统性能。 相似文献
3.
4.
池万乐 《数字社区&智能家居》2006,(2):98-99,101
支持向量机(SVM)在处理小样本高维数据及泛化性能强等方面的优势,以及Gabor小波可以很好地模拟哺乳动物视觉神经简单细胞的感受野轮廓降低外界因素的影响,提出了基于Gabor与SVM的人脸识别方法。通过对经Gabor变换人脸图像的独立成分分析得到一组Gabor人脸独立基,并且用遗传算法求得一组最优的Gabor独立基,不但可以降低特征维数,减少计算量,而且可以提高识别率。通过对耶鲁大学人脸图像数据库的测试,证实本文算法有效性。 相似文献
5.
蒋桂莲 《计算机与数字工程》2010,38(6):138-141
人脸识别方法易受光照、姿态和表情变化的影响,针对这一问题,提出了一种基于Gabor小波和粗糙集属性约简的人脸识别方法。该方法先对人脸图像进行Gabor小波变换,将小波变换的系数作为人脸图像的特征向量;然后结合信息论中信息熵与互信息的概念定义了粗糙集里的一种新的属性重要度,并以此属性重要度为启发式信息进行约简数据集,从而对所得的人脸图像特征进行降维,并采用支持向量机进行分类。实验结果表明,该算法降低了支持向量机分类器的复杂度,有较好的识别性能。 相似文献
6.
针对主成分分析(PCA) 方法在特征提取和降维方面的不足,提出一种Gabor特征筛选的仿生人脸识别方法.首先提取人脸图像Gabor特征向量, 经2DPCA方法降维处理后用仿生识别方法对其进行人脸识别.在AR 人脸库上验证了该方法的有效性.实验结果显示, 该方法的分类准确性高于仿生识别方法和PCA 等方法. 相似文献
7.
池万乐 《数字社区&智能家居》2006,(5)
支持向量机(SVM)在处理小样本高维数据及泛化性能强等方面的优势,以及Gabor小波可以很好地模拟哺乳动物视觉神经简单细胞的感受野轮廓降低外界因素的影响,提出了基于Gabor与SVM的人脸识别方法。通过对经Gabor变换人脸图像的独立成分分析得到一组Gabor人脸独立基,并且用遗传算法求得一组最优的Gabor独立基,不但可以降低特征维数,减少计算量,而且可以提高识别率。通过对耶鲁大学人脸图像数据库的测试,证实本文算法有效性。 相似文献
8.
9.
10.
基于Gabor小波特征抽取和支持向量机的人脸识别 总被引:8,自引:4,他引:8
文章利用Gabor小波对位置误差、光线等因素具有强的鲁棒性的优点,将人脸图像在一定格点上取大小和方向不同的2D-Gabor小波变换,取变换系数幅值作为特征向量,送入支持向量机中进行分类。有效地结合了Gabor小波的特征抽取能力和支持向量机的分类能力,并对AT&T人脸库进行性别分类和人脸识别,得到了较高的识别率。 相似文献
11.
李赵国 《计算机工程与应用》2013,49(12):121-124
为了提高人脸识别率和识别效率,提出一种纹理特征和两级分类器相结合的人脸识别方法。采用灰度共生矩阵表示人脸图像的纹理特征,计算待识别人脸图像与模板间欧式距离,采用拒识阈值进行评判,如果人脸图像归属类别清楚,则采用欧式距离分类器进行识别,否则将待识人脸图像送入SVM分类器进行识别,采用ORL人脸数据库和Yale人脸数据库进行仿真实验。仿真结果表明,相对于单一人脸识别器,两级分类器不仅提高了人脸识别效率,而且提高了人脸识别率,具有更好的人脸识别性能。 相似文献
12.
为使粒子群优化算法初始粒子均匀分布在解空间,增强全局的搜索能力,通过对混沌运动的遍历性和粒子群优化算法中惯性权重的分析,提出了一种改进型混沌粒子群算法。该算法采用Circle映射,产生了分布均匀的混沌变量轨道点,并结合动态调整惯性权重的思想来避免粒子群算法陷入局部最优。同时,给出了应用混沌粒子群算法训练SVM的方法,并将其应用于人脸识别。仿真实验结果表明,改进CPSO-SVM方法比基本粒子群方法能获得更好的识别性能。 相似文献
13.
稀疏编码中的字典学习在稀疏表示的图像识别中扮演着重要的作用。由于Gabor特征对表情、光照和姿态等变化具有一定的鲁棒性,提出一种基于Gabor特征和支持向量引导字典学习(GSVGDL)的稀疏表示人脸识别算法。先提取图像的Gabor特征,然后用增广Gabor特征矩阵来构造初始字典。字典学习模型中综合了重构误差项、判别项和正则化项,判别项公式化定义为所有编码向量对平方距离的加权总和;通过字典学习同时得到字典原子与类别标签相对应的结构化字典和线性分类器。该字典学习方法能够自适应地为不同的编码向量对分配不同的权值,提高了字典的判别性能。实验结果表明该方法具有很好的识别精度和较高的识别效率。 相似文献
14.
语音情感计算引起了国内外广泛的关注,特别是在语音情感特征提取方面做了大量的研究。利用经验模态分解(EMD)方法对情感语音进行处理,得到情感语音的前4阶固有模态函数(IMF),并将前4阶IMF分别通过Hilbert变换得到其瞬时频率和瞬时振幅。提取它们的统计特征,再结合情感语音的声学特征共同组成情感特征向量,并对特征向量做归一化处理。利用支持向量机(SVM)对四种情感语音即生气、高兴、悲伤和平静进行识别。实验结果表明该方法的识别效果较好。 相似文献
15.
针对人脸识别中因特征个数较多对识别的实时性和准确性影响较大的问题,提出了ReliefF-SVM RFE组合式特征选择的人脸识别方法。利用离散余弦变换提取特征和ReliefF对人脸图像特征集做特征初选,降低特征维数空间,再用改进的SVM RFE(Support Vector Machine Recursive Feature Elimination)选择最优特征,解决了利用SVM RFE特征选择时因特征数多而算法需多次训练耗时长的问题。对训练得到的特征排序表采用交叉留一验证方法选取最优子集,再由SVM分类识别。在UMIST人脸库上实验证明,可以在特征数为52时,达到98.84%的识别率,识别时间仅需0.037 s。 相似文献
16.
对贝叶斯分类中最大似然(ML)公式进行了简化,给出了一种实用的快速计算相似度的方法,在此基础上设计了基于分块Gabor特征提取的贝叶斯人脸识别算法。该算法从原始数字图像出发,先对图像矩阵进行分块,然后对分块子图像进行多分辨率的Gabor特征提取,对每一个特征块设计一个贝叶斯分类器,通过将这些分类器加权平均,得到最后的决策。在FERET人脸数据库的实验结果验证了该方法的有效性。 相似文献
17.
为提高人脸识别分类器的能力,采用了一种改进的可用于核学习方法的核函数—条件正定核函数。条件正定核函数一般不满足Mercer条件,但可以在核空间中计算样本间的距离,突出样本间的特征差异。对ORL、YALE、ESSEX三个标准人脸数据库进行仿真实验,结果表明基于条件正定核的SVM人脸识别算法在训练时间没有降低的情况下,与其他核函数法相比识别率有较大提高,并且当类别数增加时算法表现出较强的鲁棒性。 相似文献
18.
在建立非特定人普通话四声语调语音数据库的基础上,采用Mel频率倒谱系数(MFCCs)对语音数据进行特征参数的提取,并利用支持向量机(SVM)对语音中的四种声调进行了训练和识别研究。实验结果表明MFCCs和SVM的结合得到的平均识别率达到了97.6%。 相似文献
19.
由于Gabor小波和贝叶斯方法都可以通过不同的机制来减少类内差异,提出了融合Gabor和贝叶斯的人脸识别方法。该方法首先通过人脸图像特征点与Gabor滤波器的卷积来提取特征,借鉴“作差法”形成“类内差”和“类间差”空间,并用2DPCA对差异空间进行降维,最后用贝叶斯方法进行分类。通过在AR和FERET人脸库上的实验表明,与传统的方法相比较,该方法降低了运算量,提高了识别率,对具有表情及光照变化的人脸具有较高的识别率。 相似文献
20.
由于Gabor小波描述的人脸特征维数太高,直接将Gabor小波提取的特征进行识别时出现计算量大、实时性差的问题,提出了基于Gabor小波变换与分块主分量分析的人脸识别新算法。首先对人脸图像进行Gabor小波变换得到人脸图像特征,然后用分块主分量分析方法对其进行降维、提取特征向量,最后用最近邻分类器分类识别。在ORL和NUST603人脸库上进行实验,结果表明,该方法的识别率优于传统PCA、分块PCA、Gabor小波变换与PCA结合的方法。 相似文献