共查询到20条相似文献,搜索用时 62 毫秒
1.
通过对具有量子行为的粒子群优化(Quantum-behaved Particle Swarm Optimization,QPSO)算法深入分析,把协作机制引入到QPSO算法中,提出了协作的具有量子行为的粒子群优化(Cooperative Quantum-behaved Particle Swarm Optimization)算法,并详细阐述了这种算法的主要思想。测试结果表明,这种改进算法能够克服QPSO算法中的不足,增强了粒子群的优化能力。 相似文献
2.
基于量子行为粒子群算法的微电网优化配置 总被引:1,自引:0,他引:1
关于微电网的优化配置问题,是在功率平衡等一系列约束的前提下,以投资成本、环境因素等为目标,优化配置微电网中各微电源的数量.微电网的优化配置是一个动态多维非线性优化问题,传统的优化算法收敛速度慢,容易陷入局部最优,而量子行为粒子群算法以其搜索能力强、收敛速度快和解的精度高等特点,可以很好的求解微电网的优化配置问题.以某地的气象和负荷数据为例,在满足用户的冷热电负荷需求前提下,求解微电网的配置.结果表明,采用量子行为粒子群算法,可以得到各微电源容量的最佳配比方案. 相似文献
3.
4.
5.
研究粒子群优化算法(PSO)的收敛速度,以提高该算法性能是PSO的一个重要而且有意义的研究。Jun Sun 等人通过对PSO系统下的单个个体在量子多维空间的运动及其收敛性的分析,提出了具有函数形式的粒子群算法(Quantum Delta-Potential-Well-based PSO)。在此基础上进行了改进,用粒子的速度来产生一个随机数引导粒子向最优解快速靠拢,并对速度的处理采取了新的策略。仿真结果表明:该改进算法对收敛速度有非常好的改善,而且稳定性也较好。 相似文献
6.
混沌量子粒子群优化算法 总被引:1,自引:0,他引:1
针对量子粒子群优化算法在处理高维复杂函数时存在的收敛速度慢、易陷入局部极小等问题,提出了混沌量子粒子群优化算法.采用了基于群体适应值方差的早熟判断机制,同时提出了一种基于混沌搜索的新方法,提高了搜索效率.数值实验结果表明,混沌量子粒子群算法效率高、优化性能好,且具有很强的避免陷入局部最优的能力,其性能远远优于一般的粒子群算法和量子粒子群算法. 相似文献
7.
为解决粒子群优化(PSO)算法求解双层规划问题时易陷入局部最优解的问题,提出了一种基于模拟退火(SA)Metropolis准则的改进混合布谷鸟搜索量子行为粒子群优化(ICSQPSO)算法。首先,该混合算法引入SA算法中的Metropolis准则,在求解过程中既能接受好解也能以一定的概率接受坏解,增强全局寻优能力;接着,为布谷鸟搜索算法设计一种改进动态步长Lévy飞行,以保持粒子群在优化过程中较高的多样性,保证搜索广度;最后,利用布谷鸟搜索算法中的偏好随机游走机制帮助粒子跳出局部最优解。通过对13个涵盖非线性规划、分式规划、多个下层规划的双层规划实例的数值实验,结果表明:ICSQPSO算法所得12个双层规划的目标函数最优值显著优于对比算法,只有1例的结果稍差,并且有半数实例的结果优于对比算法50%。由此可见,ICSQPSO算法对双层规划的寻优能力明显优于对比算法。 相似文献
8.
9.
针对无线传感器网络(WSNs)节点定位问题,阐述了WSNs的分布迭代式定位方法研究。这种方法将每次迭代后定位的节点作为其余未知节点的参考节点.同时将基于测距定位问题看成一个多维优化问题,并提出利用具有快速收敛能力的量子行为粒子群优化(QPSO)算法进行求解。最后将仿真实验结果与粒子群优化(PSO)算法进行比较,表明QPSO算法在优化性能上优于PSO算法,有效提高了节点定位精度,证明该方法的有效性。 相似文献
10.
为了进一步提高量子行为粒子群优化(QPSO)算法的全局收敛性能,有效改善算法中存在的粒子早熟问题提出一种基于完全学习策略的改进QPSO算法(CLQPSO).该学习策略改变了QPSO中局部吸引子的更新方式,充分利用了种群的社会信息.采用8个测试函数对算法性能进行比较分析.实验结果表明,所提出的改进算法不仅收敛速度快,而且全局收敛能力好,收敛精度优于PSO算法和QPSO算法. 相似文献
11.
通过两组势阱中心不同且相互协同的主、辅子群,在具有量子行为的粒子群优化(QPSO)算法基础上构造一种基于随机评价机制的交互式双子群QPSO算法(DIR-QPSO)。该算法通过子群间的协作避免了种群多样性的快速消失,增强了算法的全局搜索能力。同时,随机因子的加入进一步提高了粒子摆脱局部极值的能力。对6个测试函数的实验结果表明, DIR-QPSO算法相对于传统的粒子群优化算法(PSO)在处理单峰和多峰函数时具有更好的优化性能,收敛速度和收敛精度都得到了较大的提高。 相似文献
12.
QPSO算法求解无约束多目标优化问题 总被引:3,自引:0,他引:3
在分析了用基于目标加权的PSO算法(WAPSO)的基础上,研究了利用基于量子行为的微粒群优化算法(QPSO)来解决多目标优化问题.提出了基于目标加权的QPSO算法(WAQPSO),利用WAQPSO算法解决无约束的多目标优化问题,通过典型的多目标测试函数实验,验证了该算法解决无约束多目标问题的有效性. 相似文献
13.
针对移动机器人路径规划问题,提出一种基于QPSO算法的路径规划方法,并用概率论的方法分析了移动机器人路径规划的收敛性,阐明了该方法随均匀分布和正态分布的参数关系和收敛区间;然后根据移动机器人的运动特征提出一种改进的轨迹规划方法。移动机器人平台的实验结果表明了该方法在移动机器人路径规划中的有效性和可行性。 相似文献
14.
在分析了VEGA和VEPSO解决多目标问题的基础上,研究了基于量子行为的微粒群优化算法(QPSO)解决多目标问题,并提出一种基于向量求值的QPSO多目标优化算法,即VEQPSO。在VEQPSO算法中改进了粒子的进化公式,通过典型的多目标测试函数所做的实验,验证了该算法解决多目标问题的有效性。 相似文献
15.
基于改进的QPSO训练BP网络的网络流量预测* 总被引:2,自引:0,他引:2
为了提高网络流量预测的精度,采用一种改进的QPSO算法训练BP神经网络对网络流量数据的时间序列进行建模预测。针对标准的QPSO算法不可避免地出现早熟的不足,提出一种新的基于参数自适应的QPSO算法,较好地避免了粒子群的早熟,提高了算法的全局收敛性能。仿真实验结果表明,与PSO训练的BP网络、QPSO训练的BP网络作为预测模型相比,该模型具有更高的预测精度及很好的稳定性。 相似文献
16.
目前电动汽车常以无刷直流电机(BLDCM)作为驱动器,但BLDCM调速控制系统中模糊控制器的量化因子和比例因子采用传统方法,自调节能力弱,针对该问题提出一种改进QPSO算法(AMF-QPSO)实现对量化因子和比例因子的自适应调节。AMF-QPSO算法以收缩—扩张系数(contraction expansion,CE)控制方式为研究重点,提出粒子活性概念,并以其作为反馈量实现动态自适应调节CE系数; 同时,为防止种群高度聚集,采用精英群体随机交叉学习机制,对部分活性低的精英粒子进行扰动,增强种群后期多样性。最后,通过LabVIEW实验平台,以具体案例验证AMF-QPSO算法性能。实验结果表明,AMF-QPSO优化的模糊PID控制器具有比标准模糊PID控制器和QPSO优化的模糊PID控制器更好的控制性和自适应性。 相似文献
17.
18.
一种改进二进制编码量子行为粒子群优化聚类算法 总被引:1,自引:0,他引:1
为了改善二进制量子行为粒子群优化(BQPSO)算法的收敛性能,提出了一种基于完全学习策略的改进BQPSO优化(CLBQPSO)算法,并由此设计了一种新的数据聚类方法.该算法在4个测试数据集上与其他一些聚类算法进行了聚类实验比较,实验结果表明,基于CLBQPSO的聚类算法不仅收敛速度快,而且有较好的全局收敛性,收敛精度优于其他聚类算法,聚类效果更好. 相似文献
19.
针对量子粒子群优化算法在处理高维复杂函数收敛速度慢、易陷入局优的问题,利用混沌算子的遍历性提出了基于惯性权重自适应调整的混沌量子粒子群优化算法。该算法在运行过程中根据粒子适应值的优劣情况,相应采取不同的惯性权重策略,以调节粒子的全局搜索和局部搜索能力。对几个典型函数的测试结果表明,该算法在收敛速度和精度上有大幅度的提高,且有很强的避免陷入局优的能力,性能远远优于一般的粒子群算法和量子粒子群算法。 相似文献