共查询到20条相似文献,搜索用时 78 毫秒
1.
合作的具有量子行为粒子群优化算法 总被引:2,自引:1,他引:1
通过对具有量子行为的粒子群优化(Quantum-behaved Particle Swarm Optimization,QPSO)算法深入分析,把协作机制引入到QPSO算法中,提出了协作的具有量子行为的粒子群优化(Cooperative Quantum-behaved Particle Swarm Optimization)算法,并详细阐述了这种算法的主要思想。测试结果表明,这种改进算法能够克服QPSO算法中的不足,增强了粒子群的优化能力。 相似文献
2.
基于量子行为粒子群算法的微电网优化配置 总被引:1,自引:0,他引:1
关于微电网的优化配置问题,是在功率平衡等一系列约束的前提下,以投资成本、环境因素等为目标,优化配置微电网中各微电源的数量.微电网的优化配置是一个动态多维非线性优化问题,传统的优化算法收敛速度慢,容易陷入局部最优,而量子行为粒子群算法以其搜索能力强、收敛速度快和解的精度高等特点,可以很好的求解微电网的优化配置问题.以某地的气象和负荷数据为例,在满足用户的冷热电负荷需求前提下,求解微电网的配置.结果表明,采用量子行为粒子群算法,可以得到各微电源容量的最佳配比方案. 相似文献
3.
4.
5.
混沌量子粒子群优化算法 总被引:1,自引:0,他引:1
针对量子粒子群优化算法在处理高维复杂函数时存在的收敛速度慢、易陷入局部极小等问题,提出了混沌量子粒子群优化算法.采用了基于群体适应值方差的早熟判断机制,同时提出了一种基于混沌搜索的新方法,提高了搜索效率.数值实验结果表明,混沌量子粒子群算法效率高、优化性能好,且具有很强的避免陷入局部最优的能力,其性能远远优于一般的粒子群算法和量子粒子群算法. 相似文献
6.
研究粒子群优化算法(PSO)的收敛速度,以提高该算法性能是PSO的一个重要而且有意义的研究。Jun Sun 等人通过对PSO系统下的单个个体在量子多维空间的运动及其收敛性的分析,提出了具有函数形式的粒子群算法(Quantum Delta-Potential-Well-based PSO)。在此基础上进行了改进,用粒子的速度来产生一个随机数引导粒子向最优解快速靠拢,并对速度的处理采取了新的策略。仿真结果表明:该改进算法对收敛速度有非常好的改善,而且稳定性也较好。 相似文献
7.
为解决粒子群优化(PSO)算法求解双层规划问题时易陷入局部最优解的问题,提出了一种基于模拟退火(SA)Metropolis准则的改进混合布谷鸟搜索量子行为粒子群优化(ICSQPSO)算法。首先,该混合算法引入SA算法中的Metropolis准则,在求解过程中既能接受好解也能以一定的概率接受坏解,增强全局寻优能力;接着,为布谷鸟搜索算法设计一种改进动态步长Lévy飞行,以保持粒子群在优化过程中较高的多样性,保证搜索广度;最后,利用布谷鸟搜索算法中的偏好随机游走机制帮助粒子跳出局部最优解。通过对13个涵盖非线性规划、分式规划、多个下层规划的双层规划实例的数值实验,结果表明:ICSQPSO算法所得12个双层规划的目标函数最优值显著优于对比算法,只有1例的结果稍差,并且有半数实例的结果优于对比算法50%。由此可见,ICSQPSO算法对双层规划的寻优能力明显优于对比算法。 相似文献
8.
9.
针对无线传感器网络(WSNs)节点定位问题,阐述了WSNs的分布迭代式定位方法研究。这种方法将每次迭代后定位的节点作为其余未知节点的参考节点.同时将基于测距定位问题看成一个多维优化问题,并提出利用具有快速收敛能力的量子行为粒子群优化(QPSO)算法进行求解。最后将仿真实验结果与粒子群优化(PSO)算法进行比较,表明QPSO算法在优化性能上优于PSO算法,有效提高了节点定位精度,证明该方法的有效性。 相似文献
10.
为了进一步提高量子行为粒子群优化(QPSO)算法的全局收敛性能,有效改善算法中存在的粒子早熟问题提出一种基于完全学习策略的改进QPSO算法(CLQPSO).该学习策略改变了QPSO中局部吸引子的更新方式,充分利用了种群的社会信息.采用8个测试函数对算法性能进行比较分析.实验结果表明,所提出的改进算法不仅收敛速度快,而且全局收敛能力好,收敛精度优于PSO算法和QPSO算法. 相似文献
11.
QPSO算法求解无约束多目标优化问题 总被引:3,自引:0,他引:3
在分析了用基于目标加权的PSO算法(WAPSO)的基础上,研究了利用基于量子行为的微粒群优化算法(QPSO)来解决多目标优化问题.提出了基于目标加权的QPSO算法(WAQPSO),利用WAQPSO算法解决无约束的多目标优化问题,通过典型的多目标测试函数实验,验证了该算法解决无约束多目标问题的有效性. 相似文献
12.
在分析了VEGA和VEPSO解决多目标问题的基础上,研究了基于量子行为的微粒群优化算法(QPSO)解决多目标问题,并提出一种基于向量求值的QPSO多目标优化算法,即VEQPSO。在VEQPSO算法中改进了粒子的进化公式,通过典型的多目标测试函数所做的实验,验证了该算法解决多目标问题的有效性。 相似文献
13.
基于改进的QPSO训练BP网络的网络流量预测* 总被引:2,自引:0,他引:2
为了提高网络流量预测的精度,采用一种改进的QPSO算法训练BP神经网络对网络流量数据的时间序列进行建模预测。针对标准的QPSO算法不可避免地出现早熟的不足,提出一种新的基于参数自适应的QPSO算法,较好地避免了粒子群的早熟,提高了算法的全局收敛性能。仿真实验结果表明,与PSO训练的BP网络、QPSO训练的BP网络作为预测模型相比,该模型具有更高的预测精度及很好的稳定性。 相似文献
14.
15.
针对量子粒子群优化算法在处理高维复杂函数收敛速度慢、易陷入局优的问题,利用混沌算子的遍历性提出了基于惯性权重自适应调整的混沌量子粒子群优化算法。该算法在运行过程中根据粒子适应值的优劣情况,相应采取不同的惯性权重策略,以调节粒子的全局搜索和局部搜索能力。对几个典型函数的测试结果表明,该算法在收敛速度和精度上有大幅度的提高,且有很强的避免陷入局优的能力,性能远远优于一般的粒子群算法和量子粒子群算法。 相似文献
16.
17.
基于基本微粒群优化算法搜索后期,众多微粒都拥挤在历史最优位置周围进行重复性无效搜索这一现象,提出一种改进的微粒群算法--自适应搜索区域的微粒群优化算法,其主要思想为:每当搜索进行到当前设定的一个最大迭代次数时(即,微粒在全局历史最优位置周围徘徊进行无效搜索时),在原搜索区域的基础上,重新构造一个较小的搜索区域,并重新初始化微粒,继续进行搜索,最终获得最优解.对3个常用标准测试函数进行优化计算,仿真结果表明,该算法具有比基本微粒群优化算法更好的优化性能. 相似文献
18.
提出了构建模糊分类系统的有效方法.通过量子位选择的方法对初始的模糊规则进行优化,减少种群规模、提高全局搜索能力,且可以大幅缩短训练时间,达到快速收敛、有效分类的目的.为了优化模糊分类空间和减少模糊规则数目,提出了量子行为粒子群优化(QPSO)算法,提高初始模糊分类系统的性能.实验结果证明:优化方法较之其他方法更有效率,准确率更高. 相似文献
19.
针对现行的遗传算法存在进化速度过慢和过早收敛的局限,以及粒子群优化算法搜索空间有限、容易陷入局部最优点的缺陷,提出将一种基于量子行为的粒子群优化算法应用于作业车间调度问题.将该问题中的每个调度组成一个多维向量,以此向量作为量子粒子群优化算法中的粒子进行进化,由此在解空间内搜索最优解.实例仿真结果表明,该算法收敛速度快、全局收敛性能好,可以得到比遗传算法、粒子群优化算法更佳的调度效果,证明了算法的有效性. 相似文献
20.
基于并行二进制免疫量子粒子群优化的特征选择方法 总被引:1,自引:0,他引:1
为提高文本挖掘算法的运行速度,降低占用的内存空间,提出一种基于并行二进制免疫量子粒子群优化的特征选择方法.该方法采用二进制免疫量子粒子群优化搜索特征子集,利用并行算法来提高时间效率,从而较快地获得较具代表性的特征子集.实验结果表明该算法是有效的. 相似文献