共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
《计算机应用与软件》2018,(1)
针对通常使用的色情图像检测方法中难以获取准确的色情图像特征的问题,提出一种以数据为导向基于深度卷积神经网络来获取图像特征的色情图像检测方法。对含色情内容和不含色情内容的图片数据集进行数据增强处理,接着使用Inception模块设计及建立卷积神经网络模型;使用批量随机梯度下降算法训练卷积神经网络获取色情图像特征;使用训练好的模型识别一张图像是否是色情图像。测试集检测正确率达到了99.06%,对比实验表明所设计的网络模型因其参数更少比其他模型更不易过拟合并比其他方法实现了更高的准确率。 相似文献
3.
目的 遥感图像目标检测是遥感图像处理的核心问题之一,旨在定位并识别遥感图像中的感兴趣目标。为解决遥感图像目标检测精度较低的问题,在公开的NWPU_VHR-10数据集上进行实验,对数据集中的低质量图像用增强深度超分辨率(EDSR)网络进行超分辨率重构,为训练卷积神经网络提供高质量数据集。方法 对原Faster-RCNN (region convolutional neural network)网络进行改进,在特征提取网络中加入注意力机制模块获取更多需要关注目标的信息,抑制其他无用信息,以适应遥感图像视野范围大导致的背景复杂和小目标问题;并使用弱化的非极大值抑制来适应遥感图像目标旋转;提出利用目标分布之间的互相关对冗余候选框进一步筛选,降低虚警率,以进一步提高检测器性能。结果 为证明本文方法的有效性,进行了两组对比实验,第1组为本文所提各模块间的消融实验,结果表明改进后算法比原始Faster-RCNN的检测结果高了12.2%,证明了本文所提各模块的有效性。第2组为本文方法与其他现有方法在NWPU_VHR-10数据集上的对比分析,本文算法平均检测精度达到79.1%,高于其他对比算法。结论 本文使用EDSR对图像进行超分辨处理,并改进Faster-RCNN,提高了算法对遥感图像目标检测中背景复杂、小目标、物体旋转等情况的适应能力,实验结果表明本文算法的平均检测精度得到了提高。 相似文献
4.
基于卷积神经网络的目标检测研究综述 总被引:1,自引:0,他引:1
随着训练数据的增加以及机器性能的提高,基于卷积神经网络的目标检测冲破了传统目标检测的瓶颈,成为当前目标检测的主流算法。因此,研究如何有效地利用卷积神经网络进行目标检测具有重要的价值。首先回顾了卷积神经网络如何解决传统目标检测中存在的问题;其次介绍了卷积神经网络的基本结构,叙述了当前卷积神经网络的研究进展以及常用的卷积神经网络;然后重点分析和讨论了两种应用卷积神经网络进行目标检测的思路和方法,指出了目前存在的不足;最后总结了基于卷积神经网络的目标检测,以及未来的发展方向。 相似文献
5.
高光谱图像(Hyperspectral Imagery,HSI)分类是高光谱图像处理和应用的一项重要工作.随着深度学习的不断发展,卷积神经网络(Convolutional Neural Network,CNN)日渐成为处理高光谱遥感图像分类问题的一个有效方法.首先对高光谱遥感图像分类任务进行了概述,分析了目前存在的问题... 相似文献
6.
7.
针对遥感图像旋转框定位过程通常会出现分类分数和定位精度不匹配、交并比计算不精确的问题,文章提出了一个鲁棒性高的单阶段对齐检测网络(Single-stage Alignment Network, SAN),首先在网络中采用了对齐卷积,解决了分类分数和定位精度不匹配的问题;其次在网络训练过程中引入椭圆损失函数,将传统采用的定位交并比的计算方式转换为椭圆区域的参数表示计算。该方法在DOTA和HRSC2016数据集上进行的实验取得了74.3%和89.0%的平均精度,分别比基线方法高出13.2%和15.5%,优于大部分的主流网络模型。 相似文献
8.
9.
目标检测是计算机视觉中的核心任务之一,在智能视频监控、自动化监测、工业检测等领域应用广泛。近些年来,随着深度学习的快速发展,基于深度卷积神经网络的目标检测算法逐渐替代了传统的目标检测算法,成为了该领域的主流算法。介绍了目标检测算法的常用数据集和性能评价指标,介绍了卷积神经网络的发展,重点分析比较了两阶段目标检测算法和单阶段目标检测算法,展望了基于深度卷积神经网络的目标检测算法未来的发展。 相似文献
10.
目的 卫星图像往往目标、背景复杂而且带有噪声,因此使用人工选取的特征进行卫星图像的分类就变得十分困难。提出一种新的使用卷积神经网络进行卫星图像分类的方案。使用卷积神经网络可以提取卫星图像的高层特征,进而提高卫星图像分类的识别率。方法 首先,提出一个包含六类图像的新的卫星图像数据集来解决卷积神经网络的有标签训练样本不足的问题。其次,使用了一种直接训练卷积神经网络模型和3种预训练卷积神经网络模型来进行卫星图像分类。直接训练模型直接在文章提出的数据集上进行训练,预训练模型先在ILSVRC(the ImageNet large scale visual recognition challenge)-2012数据集上进行预训练,然后在提出的卫星图像数据集上进行微调训练。完成微调的模型用于卫星图像分类。结果 提出的微调预训练卷积神经网络深层模型具有最高的分类正确率。在提出的数据集上,深层卷积神经网络模型达到了99.50%的识别率。在数据集UC Merced Land Use上,深层卷积神经网络模型达到了96.44%的识别率。结论 本文提出的数据集具有一般性和代表性,使用的深层卷积神经网络模型具有很强的特征提取能力和分类能力,且是一种端到端的分类模型,不需要堆叠其他模型或分类器。在高分辨卫星图像的分类上,本文模型和对比模型相比取得了更有说服力的结果。 相似文献
11.
针对传统卷积神经网络(CNN)稀疏网络结构无法保留全连接网络密集计算的高效性和实验过程中激活函数的经验性选择造成结果不准确或计算量大的问题,提出一种改进卷积神经网络方法对遥感图像进行分类。首先,利用Inception模块的不同尺度卷积核提取图像多尺度特征,然后利用Maxout模型学习隐藏层节点的激活函数,最后通过Softmax方法对图像进行分类。在美国土地使用分类数据集(UCM_LandUse_21)上进行的实验结果表明,在卷积层数相同的情况下,所提方法比传统的CNN方法分类精度提高了约3.66%,比同样也基于多尺度深度卷积神经网络(MS_DCNN)方法分类精度提高了2.11%,比基于低层特征和中层特征的视觉词典等方法分类精度更是提高了10%以上。因此,所提方法具有较高的分类效率,适用于图像分类。 相似文献
12.
针对纹身图像的特点和卷积神经网络(CNN)在全连接层对图像特征抽取能力的不足问题,提出一种三通道的卷积神经网络纹身图像检测算法,并进行了三方面的改进工作。首先,针对纹身图像的特点改进图像预处理方案;其次,设计了一个基于三通道全连接层的卷积神经网络进行特征提取,并对特征建立索引,有效地提高了网络对不同尺度下空间信息的提取能力,实现了对纹身图像的高效检测;最后,通过两个数据集验证了算法的泛化能力。实验结果表明,对NIST数据集所提预处理方案比Alex方案有总正确率提高0.17个百分点,纹身图像正确率提高0.29个百分点。在所提预处理方案下,提出的算法在标准的NIST纹身图像集上具有明显的优势,正确率从NIST公布的最优值96.3%提高到99.1%,提高了2.8个百分点;相对于传统的CNN算法,正确率从98.8%提高到99.1%,提高了0.3个百分点。在Flickr数据集上也有相应的性能提升。 相似文献
13.
为了在行人检测任务中使卷积神经网络(CNN)选择出更优模型并获得定位更准确的检测框,提出一种改进的基于卷积神经网络的行人检测方法。改进主要涉及两个方面:如何决定CNN样本迭代学习次数和如何进行重合窗口的合并。首先,关于CNN样本迭代次序问题,在顺序迭代训练多个CNN分类模型的基础上,提出一种基于校验集正确率及其在迭代系列分类器中展现出的稳定性进行更优模型选择的策略,以使最终选择的分类器推广能力更优。其次,提出了一种不同于非极大值抑制(NMS)的多个精确定位回归框合并机制。精确定位回归框的获取以CNN检测过程输出的粗定位框作为输入。然后,对每个粗定位框应用CNN精确定位过程并获得对应的精确定位回归框。最后,对多个精确定位回归框进行合并,合并过程考虑了每个精确定位回归框的正确概率。更精确地说,最终的合并窗口是基于多个相关的精确定位回归框的概率加权求和方式获得。针对提出的两个改进,在国际上广泛使用的行人检测公共测试数据集ETH上进行了一系列实验。实验结果表明,所提的两个改进方法均能有效地提高系统的检测性能,在相同的测试条件下,融合两个改进的方法相比Fast R-CNN算法检测性能提升了5.06个百分点。 相似文献
14.
为了应对大量图像的分类问题,提出一种基于深度卷积神经网络和CUDA-cuDNN并行运算的快速图像分类方法。该方法利用深度卷积神经网络自动学习特征的优势来解决手工设计特征普适性差等问题,同时结合基于CUDA架构的cuDNN并行运算策略来提高训练速度和加快分类速度,并且针对深度卷积神经网络易受参数扰动等缺点,引入批量正则化(Batch Normalization)以提高算法的鲁棒性。实验结果表明,该方法不仅大幅缩短了训练时间同时加快了图像的分类速度,而且进一步降低了图像分类的错误率。 相似文献
15.
针对不平衡图像分类中少数类查全率低、分类结果总代价高,以及人工提取特征主观性强而且费时费力的问题,提出了一种基于Triplet-sampling的卷积神经网络(Triplet-sampling CNN)和代价敏感支持向量机(CSSVM)的不平衡图像分类方法——Triplet-CSSVM。该方法将分类过程分为特征学习和代价敏感分类两部分。首先,利用误差公式为三元损失函数的卷积神经网络端对端地学习将图像映射到欧几里得空间的编码方法;然后,结合采样方法重构数据集,使其分布平衡化;最后,使用CSSVM分类算法给不同类别赋以不同的代价因子,获得最佳代价最小的分类结果。在深度学习框架Caffe上使用人像数据集FaceScrub进行实验。实验结果表明,所提方法在1∶3的不平衡率下,与VGGNet-SVM方法相比,少数类的精确率提高了31个百分点,召回率提高了71个百分点。 相似文献
16.
以智慧城市管理系统中上报的案件图像为研究对象,利用卷积神经网络能够自行学习图像特征的优势,提出一种改进的深层卷积神经网络算法,并利用该算法对智慧城市管理系统(下简称“智慧城管”)的案件图像进行快速精确分类,从而完成城市管理系统中案件的自动分类。采用ZCA白化处理降低图像数据特征之间的相关性;搭建八层卷积神经网络对白化后的图像进行分类,并在卷积层采用线性纠正单元(ReLU)加速训练过程,在pooling层利用dropout技术防止算法过拟合;在网络精调阶段采用BP(Back Propagation)算法进行优化,提高算法的鲁棒性。基于上述方法对道路交通类和市容环境类两类案件图像进行二分类实验,平均精度达到97.5%,F1-Score达到0.98,性能超过了LSVM、SAE以及传统的CNN等方法;同时该方法又对电动车乱摆放类、乱扔垃圾类、机动车违章停放类、垃圾桶周围脏乱类共四类案件进行四分类实验,平均精度为90.5%,F1-Score为0.91,性能依然超过了LSVM、SAE以及传统的CNN等方法。 相似文献
17.
深度卷积神经网络以多层次的特征学习与丰富的特征表达能力,在目标检测领域取得了突破进展。概括了卷积神经网络在目标检测领域的研究进展,首先回顾传统目标检测的发展及存在的问题,引出卷积神经网络的目标检测基本原理和基本训练方法;然后分析了以R-CNN为代表的基于区域建议的目标检测框架,介绍以YOLO算法为代表的将目标检测归结为回归问题的目标检测框架;最后,对目前目标检测的一些问题进行简要总结,对未来深度卷积神经网络在目标检测的发展进行了展望。 相似文献
18.
针对当前基于深度学习的显著性对象检测算法不能准确保存对象边缘的区域,从而导致检测出的显著性对象边缘区域模糊、准确率不高的问题,提出了一种基于多任务深度学习模型的显著性对象检测算法。首先,基于深度卷积神经网络(CNN),训练一个多任务模型分别学习显著性对象的区域和边缘的特征;然后,利用检测到的边缘生成大量候选区域,再结合显著性区域检测的结果对候选区域进行排序和计算权值;最后提取出完整的显著性图。在三个常用标准数据集上的实验结果表明,所提方法获得了更高的准确率,其中F-measure比基于深度学习的算法平均提高了1.9%,而平均绝对误差(MAE)平均降低了12.6%。 相似文献
19.
心脏疾病严重威胁人类身体健康,心电图(Electrocardiogram,ECG)心拍分类对心脏疾病的临床诊断和自动诊断具有重要意义。现有基于深度学习生成的ECG心拍特征虽然优于基于传统方法生成的心拍特征,但是因ECG中各类间存在着严重的数据不平衡问题,致使现有基于深度学习方法生成的心拍特征的性能仍不甚理想。针对这一问题,以卷积神经网络(Convolutional Neural Network,CNN)为基础,在各类心拍等量数据基础上构建能有效表达各类心拍共性信息的共性CNN模型,以共性CNN模型和最小化类内距离最大化类间距离模型为基础,分别在各类心拍数据上构建能有效反映相应心拍类别倾向性信息的类别CNN模型,综合各心拍类别CNN模型的输出进行识别与分类。在MIT-BIH数据库上的实验结果显示,该方法识别分类心拍的各项指标均达到100%,解决了MIT-BIH数据库中ECG四类心拍自动识别分类的问题。 相似文献