首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
手写汉字识别是模式识别与机器学习的重要研究方向和应用领域;近年来,随着深度学习理论方法的完善、新技术的层出不穷,深度神经网络在图像识别分类、图像生成等典型应用中取得了突破性的进展,其中,深度残差网络作为最新的研究成果,已成功应用于手写数字识别、图片识别分类等多个领域;将研究深度残差网络在脱机孤立手写汉字识别中的应用方法,通过改进残差学习模块的单元结构,优化深度残差网络性能,同时通过对训练集的预处理,从数据层面实现训练生成模型性能的提升,最后设计实验,验证深度残差网络、End-to-End模式在脱机手写汉字识别中的可行性,分析、总结存在的问题及今后的研究方向。  相似文献   

2.
针对提高不同笔体下的手写识别准确率进行了研究,将深度卷积神经网络与自动编码器相结合,设计卷积自编码器网络层数,形成深度卷积自编码神经网络。首先采用双线性插值方法分别对MNIST数据集与一万幅自制中国大学生手写数字图片进行图像预处理,然后先使用单一MNIST数据集对深度卷积自编码神经网络进行训练与测试;最后使用MNIST与自制数据集中5 000幅混合,再次训练该网络,对另外5 000幅进行测试。实验数据表明,所提深度卷积自编码神经网络在MNIST测试集正确率达到99.37%,有效提高了准确率;且5 000幅自制数据集模型测试正确率达99.33%,表明该算法实用性较强,在不同笔体数字上得到了较高的识别准确率,模型准确有效。  相似文献   

3.
本文对笔划识别过程中提取关键点的重要性进行分析研究,介绍了提取拐点的两种常用的算法,并进一步结合这两种算法的优缺点,提出了二次检测的方法,使得系统提取拐点的准确度得到了进一步提高.实验结果表明,本文提出的改进方法具有很好的鲁棒性.  相似文献   

4.
陈站  邱卫根  张立臣 《计算机应用研究》2020,37(4):1244-1246,1251
由于字形的复杂多变,脱机手写汉字的识别一直是模式识别的难题,深度卷积神经网络的发展为其提供了一种直接有效的解决方案。研究基于inceptions 结构神经网络的脱机手写汉字识别,提出了一种inception结构的改进方法,它具有结构更加简单、网络深度扩展更加容易、需要的训练参数量更少的优点。该方法在数据集CISIA-HWDB1.1 上进行了实验验证,采用随机梯度下降优化算法,模型达到了96.95%的平均准确率。实验结果表明,使用改进的inception结构在图像分类上具有更好的鲁棒性,更容易扩展到其他应用领域。  相似文献   

5.
为提高手写汉字的识别率,针对手写汉字的有效分割,建立了卷积神经网络手写汉字体识别模型,并对投影法和轮廓检测法的适用性进行了对比分析。实验结果显示,相较于轮廓检测法,投影法更适用于手写汉字识别中对文字图像的处理工作,可以实现对所需文字的有效切分,同时简化手写汉字识别网络的设置并提高识别准确率。  相似文献   

6.
针对传统脱机手写汉字识别的过程复杂、精度低,而常用卷积神经网络的特征信息提取不充分,同时存在相同特征信息的重叠和冗余问题。设计了一个特征分组提取融合的深度卷积神经网络模型。通过多级堆叠的特征分组提取模块,提取图像的深层抽象特征信息,并进行特征信息之间的交流融合。利用设计的下采样和通道扩增模块,在降低特征维度的同时保留图像重要信息。将特征信息进行精炼和浓缩,来解决特征信息的重叠和冗余问题。最终训练出的神经网络达到top1当前先进的正确率为97.16%,同时top5正确率为99.36%,并具有很好的泛化能力。  相似文献   

7.
随着移动技术与相关技术的迅速发展,手机、个人掌上电脑(PDA)、笔记本电脑等各种电子设备变得流行.它们已成为人们工作和娱乐必不可少的随身用品。对于各种移动电子设备在中国的推广使用.汉字输入是一个必须考虑的问题。传统的输入方式大多使用键盘,不论是笔记本电脑使用的标准键盘,还是各手机厂商设计的简化键盘,都是使用键盘采集信息,然后通过汉语拼音或者笔画输入等方式完成汉字输入。对于嵌入式小型设备来说.原有键盘设计引起占用空间大和输入汉字效率低等诸多问题。如何解决这些问题,同时保证设备足够的显示空间,又不添加新的复杂硬件设备。一种叫做触摸屏手写汉字输入的技术越来越受到人们的推崇。以Windows CE5.0为运行平台,Embedded Visual C++ 4.0,为开发环境,设计和实现了一套屏幕手写识别系统,不仅能对现有汉字进行有效识别.用户还可以根据需要自行对字库扩展.有助于提高汉字的识别率.  相似文献   

8.
随着移动技术与相关技术的迅速发展,手机、个人掌上电脑(PDA)、笔记本电脑等各种电子设备变得流行,它们已成为人们工作和娱乐必不可少的随身用品。对于各种移动电子设备在中国的推广使用,汉字输入是一个必须考虑的问题。传统的输入方式大多使用键盘,不论是笔记本电脑使用的标准键盘,还是各手机厂商设计的简化键盘,都是使用键盘采集信息,然后通过汉语拼音或者笔画输入等方式完成汉字输入。对于嵌入式小型设备来说,原有键盘设计引起占用空间大和输入汉字效率低等诸多问题。如何解决这些问题,同时保证设备足够的显示空间,又不添加新的复杂硬件设备。一种叫做触摸屏手写汉字输入的技术越来越受到人们的推崇。以Windows CE 5.0为运行平台,Embedded Visual C 4.0,为开发环境,设计和实现了一套屏幕手写识别系统,不仅能对现有汉字进行有效识别,用户还可以根据需要自行对字库扩展,有助于提高汉字的识别率。  相似文献   

9.
深度学习在手写汉字识别中的应用综述   总被引:8,自引:0,他引:8       下载免费PDF全文
手写汉字识别(Handwritten Chinese character recognition,HCCR)是模式识别的一个重要研究领域,最近几十年来得到了广泛的研究与关注,随着深度学习新技术的出现,近年来基于深度学习的手写汉字识别在方法和性能上得到了突破性的进展.本文综述了深度学习在手写汉字识别领域的研究进展及具体应用.首先介绍了手写汉字识别的研究背景与现状.其次简要概述了深度学习的几种典型结构模型并介绍了一些主流的开源工具,在此基础上详细综述了基于深度学习的联机和脱机手写汉字识别的方法,阐述了相关方法的原理、技术细节、性能指标等现状情况,最后进行了分析与总结,指出了手写汉字识别领域仍需要解决的问题及未来的研究方向.  相似文献   

10.
基于卷积神经网络在手写数字识别上的应用,对卷积神经网络模型进行介绍.本实验使用python编程语言在Keras上搭建模型,并对模型进行训练.实验数据集为MNIST.模型训练完毕后,对准确率进行评估.最后对测试数据进行预测以及利用混淆矩阵对哪些数字准确率较高和哪些数字容易混淆进行评估.  相似文献   

11.
基于双弹性网格的手写体汉字识别   总被引:5,自引:0,他引:5  
特征提取是手写体汉字识别的关键,目前四方向网格特征已被实验证实是一种较好的手写体汉字特征。针对通常的纵横弹性网格对汉字“撇、捺”笔画特征提取的不足,提出一种新的网格构造技术——对角弹性网格,它由45°和135°的对角直线构成,将汉字图像划分为多个菱形,能够很好地适应汉字在“撇、捺”方向的变化。将这两种网格单独,以及相互组合成双网格等情况分别进行手写体识别实验,实验结果验证了对角弹性网格的有效性和双弹性网格的高识别率性。  相似文献   

12.
针对汉字识别的超多类问题,将贝叶斯网络分类器引入小样本字符集脱机手写体汉字识别中.对手写大写数字汉字的小样本字符集构造识别系统,同时与传统的欧氏距离方法进行比较,实验表明该算法将识别率提高到92.4%,在小样本字符集脱机手写体识别中具有较强的实用性和良好的扩展性.  相似文献   

13.
验证码今已广泛应用在各个领域,常见的英文字母与数字组合的验证码自动识别准确率已达到较高的水准,而汉字因其字符复杂,用传统方法进行自动识别难度很大。提出一种基于卷积神经网络的验证码自动识别方法来提高字符的识别准确率。采用Keras卷积神经网络框架,设计多层卷积来提取深层次图像信息,分别对汉字验证码和字母数字验证码进行识别,以提高模型的泛化性。实验结果表明用该方法汉字验证码的单字识别率已达到99.4%;传统四字符字母数字验证码的识别率最高达到99.3%。这一结果表明深度神经网络对验证码复杂结构的感知能力很强大,通过对比实验发现Keras框架在验证码识别领域有较好效果。  相似文献   

14.
汉字由笔画或子笔画组成,笔画或子笔画特征在手写体汉字识别中得到了广泛应用。论文提出一种模糊子笔画抽取方法,解决了因无限制手写体笔画随意性而使得抽取的子笔画不稳定的问题。计算字符边缘点“横”、“竖”、“撇”、“捺”的模糊子笔画属性特征,并将其与模糊网格相结合,生成模糊子笔画统计特征。银行支票手写体汉字大写金额识别的实验结果表明应用模糊子笔画统计特征能取得更好的识别效果。  相似文献   

15.
基于压缩传感的手写字符识别方法   总被引:1,自引:0,他引:1  
基于新出现的压缩传感理论,提出了一种鲁棒的手写字符识别方法,能很好地对含有噪声的字符进行识别.该方法通过对测试字符进行稀疏表示,采用l1范数最小化算法求得最稀疏的系数解,所获得的系数具有明显的类别信息,从而易于对测试字符进行分类.实验结果表明,该方法具有很好的噪声鲁棒性.  相似文献   

16.
手写体数字识别问题是模式识别领域的一个重要研究课题.提出了一种基于多层激励函数的量子神经网络和多级分类器组合的手写体数字识别方法,采用MNIST数据库进行训练和测试.实验结果表明,该识别方法在识别率和可靠性方面均有很好的效果,同时也体现出量子神经网络用于模式识别的优越性和潜力.  相似文献   

17.
贴片电阻由于其体积微小、性能稳定等独特的性质,在当今智能化的电子设备中被广泛使用。为保证贴片电阻的出厂质量,需要对其进行缺陷识别、极性方向识别、正反面识别和种类识别,目前很大程度上依靠人工肉眼进行识别检测,效率低、容易误检、成本高。本文针对传统图像识别方法的局限性,结合近年来卷积神经网络在图像识别方面所取得的巨大成就,基于AlexNet模型、GoogLeNet模型、ResNet模型思想设计了3种深度适宜、可训练参数约4×106(百万)的卷积神经网络,克服了当前主流卷积神经网络模型由于可训练参数过多、模型层数太深导致在贴片电阻识别应用中识别速度不能满足实时性要求、泛化识别准确率低的问题。实验表明,3种模型的识别准确率均超过90%,最高识别准确率达到95%,识别速度达到0.203 s/张(256像素×256像素,CORE I5)。因此,本文设计的3种卷积神经网络可根据具体实际需求进行选用,在实践中具有极强的可行性和可推广性,同时也在提升企业生产效率和产品质量方面具有重要意义。  相似文献   

18.
在手势识别研究过程中,人工选取特征难以适应手势的多变性。提出了一种结合肤色模型和卷积神经网络的手势识别方法,对采集的不同背景下的手势图像,首先用肤色高斯模型分割出手势区域,然后采用卷积神经网络建立手势的识别模型,该模型融合了手势特征提取和分类过程,模拟视觉传导和认知,有效避免了人工特征提取的主观性和局限性。识别模型以手势区域的灰度信息为输入,同时利用权值共享和池化等技术减少网络权值个数,降低了模型的复杂度。实验结果表明,卷积神经网络(CNN)方法能够有效进行特征学习,在不同数据集下对手势的平均识别率都达到95%以上,与传统方法进行对比实验,表明该方法具有较高的识别率和实时性。  相似文献   

19.
为提高仅包含少量训练样本的图像识别准确率,利用卷积神经网络作为图像的特征提取器,提出一种基于卷积神经网络的小样本图像识别方法。在原始小数据集中引入数据增强变换,扩充数据样本的范围;在此基础上将大规模数据集上的源预训练模型在目标小数据集上进行迁移训练,提取除最后全连接层之外的模型权重和图像特征;结合源预训练模型提取的特征,采用层冻结方法,微调目标小规模数据集上的卷积模型,得到最终分类识别结果。实验结果表明,该方法在小规模图像数据集的识别问题中具有较高的准确率和鲁棒性。  相似文献   

20.
多分类器集成是解决手写体汉字识别性能的重要方法之一,近年来受到了学术届的普遍关注。文章提出了一种基于单字单网的手写体汉字识别纯神经网络的多分类器集成方案,并通过实验证明该方案是行之有效的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号