首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
手写汉字识别是模式识别与机器学习的重要研究方向和应用领域;近年来,随着深度学习理论方法的完善、新技术的层出不穷,深度神经网络在图像识别分类、图像生成等典型应用中取得了突破性的进展,其中,深度残差网络作为最新的研究成果,已成功应用于手写数字识别、图片识别分类等多个领域;将研究深度残差网络在脱机孤立手写汉字识别中的应用方法,通过改进残差学习模块的单元结构,优化深度残差网络性能,同时通过对训练集的预处理,从数据层面实现训练生成模型性能的提升,最后设计实验,验证深度残差网络、End-to-End模式在脱机手写汉字识别中的可行性,分析、总结存在的问题及今后的研究方向。  相似文献   

2.
本文对笔划识别过程中提取关键点的重要性进行分析研究,介绍了提取拐点的两种常用的算法,并进一步结合这两种算法的优缺点,提出了二次检测的方法,使得系统提取拐点的准确度得到了进一步提高.实验结果表明,本文提出的改进方法具有很好的鲁棒性.  相似文献   

3.
针对提高不同笔体下的手写识别准确率进行了研究,将深度卷积神经网络与自动编码器相结合,设计卷积自编码器网络层数,形成深度卷积自编码神经网络。首先采用双线性插值方法分别对MNIST数据集与10 000幅自制中国大学生手写数字图片进行图像预处理,然后使用单一MNIST数据集对深度卷积自编码神经网络进行训练与测试;最后使用MNIST与自制数据集中5 000幅图片混合,再次训练该网络,对另外5 000幅图片进行测试。实验数据表明,所提深度卷积自编码神经网络在MNIST测试集正确率达到99. 37%;且5 000幅自制数据集模型测试正确率达99. 33%,表明该算法实用性较强,在不同笔体数字上得到了较高的识别准确率,模型准确有效。  相似文献   

4.
针对传统脱机手写汉字识别的过程复杂、精度低,而常用卷积神经网络的特征信息提取不充分,同时存在相同特征信息的重叠和冗余问题。设计了一个特征分组提取融合的深度卷积神经网络模型。通过多级堆叠的特征分组提取模块,提取图像的深层抽象特征信息,并进行特征信息之间的交流融合。利用设计的下采样和通道扩增模块,在降低特征维度的同时保留图像重要信息。将特征信息进行精炼和浓缩,来解决特征信息的重叠和冗余问题。最终训练出的神经网络达到top1当前先进的正确率为97.16%,同时top5正确率为99.36%,并具有很好的泛化能力。  相似文献   

5.
为提高手写汉字的识别率,针对手写汉字的有效分割,建立了卷积神经网络手写汉字体识别模型,并对投影法和轮廓检测法的适用性进行了对比分析。实验结果显示,相较于轮廓检测法,投影法更适用于手写汉字识别中对文字图像的处理工作,可以实现对所需文字的有效切分,同时简化手写汉字识别网络的设置并提高识别准确率。  相似文献   

6.
随着移动技术与相关技术的迅速发展,手机、个人掌上电脑(PDA)、笔记本电脑等各种电子设备变得流行.它们已成为人们工作和娱乐必不可少的随身用品。对于各种移动电子设备在中国的推广使用.汉字输入是一个必须考虑的问题。传统的输入方式大多使用键盘,不论是笔记本电脑使用的标准键盘,还是各手机厂商设计的简化键盘,都是使用键盘采集信息,然后通过汉语拼音或者笔画输入等方式完成汉字输入。对于嵌入式小型设备来说.原有键盘设计引起占用空间大和输入汉字效率低等诸多问题。如何解决这些问题,同时保证设备足够的显示空间,又不添加新的复杂硬件设备。一种叫做触摸屏手写汉字输入的技术越来越受到人们的推崇。以Windows CE5.0为运行平台,Embedded Visual C++ 4.0,为开发环境,设计和实现了一套屏幕手写识别系统,不仅能对现有汉字进行有效识别.用户还可以根据需要自行对字库扩展.有助于提高汉字的识别率.  相似文献   

7.
随着移动技术与相关技术的迅速发展,手机、个人掌上电脑(PDA)、笔记本电脑等各种电子设备变得流行,它们已成为人们工作和娱乐必不可少的随身用品。对于各种移动电子设备在中国的推广使用,汉字输入是一个必须考虑的问题。传统的输入方式大多使用键盘,不论是笔记本电脑使用的标准键盘,还是各手机厂商设计的简化键盘,都是使用键盘采集信息,然后通过汉语拼音或者笔画输入等方式完成汉字输入。对于嵌入式小型设备来说,原有键盘设计引起占用空间大和输入汉字效率低等诸多问题。如何解决这些问题,同时保证设备足够的显示空间,又不添加新的复杂硬件设备。一种叫做触摸屏手写汉字输入的技术越来越受到人们的推崇。以Windows CE 5.0为运行平台,Embedded Visual C 4.0,为开发环境,设计和实现了一套屏幕手写识别系统,不仅能对现有汉字进行有效识别,用户还可以根据需要自行对字库扩展,有助于提高汉字的识别率。  相似文献   

8.
陈站  邱卫根  张立臣 《计算机应用研究》2020,37(4):1244-1246,1251
研究基于inceptions结构神经网络的脱机手写汉字识别,提出了一种inception结构的改进方法,它具有结构更加简单、网络深度扩展更加容易、需要的训练参数量更少的优点。该方法在数据集CISIA-HWDB1. 1上进行了实验验证,采用随机梯度下降优化算法,模型达到了96. 95%的平均准确率。实验结果表明,使用改进的inception结构在图像分类上具有更好的鲁棒性,更容易扩展到其他应用领域。  相似文献   

9.
深度学习在手写汉字识别中的应用综述   总被引:8,自引:0,他引:8       下载免费PDF全文
手写汉字识别(Handwritten Chinese character recognition,HCCR)是模式识别的一个重要研究领域,最近几十年来得到了广泛的研究与关注,随着深度学习新技术的出现,近年来基于深度学习的手写汉字识别在方法和性能上得到了突破性的进展.本文综述了深度学习在手写汉字识别领域的研究进展及具体应用.首先介绍了手写汉字识别的研究背景与现状.其次简要概述了深度学习的几种典型结构模型并介绍了一些主流的开源工具,在此基础上详细综述了基于深度学习的联机和脱机手写汉字识别的方法,阐述了相关方法的原理、技术细节、性能指标等现状情况,最后进行了分析与总结,指出了手写汉字识别领域仍需要解决的问题及未来的研究方向.  相似文献   

10.
本文评述了目前三种汉字的计算机表示和二种传统的汉字结构分析方法。应用拓扑和几何的基本原理, 分析汉字结构及其制约关系。从而, 确定四类组成汉字的基本关系并在此基础上实现了汉字原型, 给出了把汉字原型应用在手写汉字认别的实例。  相似文献   

11.
多分类器集成是解决手写体汉字识别性能的重要方法之一,近年来受到了学术届的普遍关注。文章提出了一种基于单字单网的手写体汉字识别纯神经网络的多分类器集成方案,并通过实验证明该方案是行之有效的。  相似文献   

12.
针对手写汉字字符图像识别率受随机噪声影响的问题,提出了一种基于深度学习与抑制噪声相结合的新算法。该算法主要应用于拥有随机噪声的手写汉字字符图片,是其在Python环境下,利用Caffe平台建立抑制噪声与卷积神经网络相结合的模型,通过模型移除噪声并正确识别手写汉字。另外,新算法去除噪声的同时对字符形态没有改变,保留了汉字的原始信息。结果在其两种不同的噪声(高斯噪声和椒盐噪声)下,逐渐提升其噪声强度,进行多次实验,同时与其他方法对比,最终得到其平均识别率为97.05%。实验结果表明,该模型和算法具有效率快、识别能力强的优点。  相似文献   

13.
基于反馈的手写体字符识别方法的研究   总被引:13,自引:0,他引:13  
该文提出了一种基于反馈的手写体字符识别方法。该方法将人工神经网络结构及学习算法运用于系统反馈机制中,并从理论上证明了该学习方法是收敛的,保证了算法的有效性。同时给出了反馈的可视化约束及反馈的判别准则。试验结果证明了该方法大大降低了高噪音手写体数字的识别率。该方法指出了一条进一步提高手写体字符系统性能的新途径。  相似文献   

14.
15.
小类别数手写汉字识别   总被引:5,自引:0,他引:5       下载免费PDF全文
针对小类别数手写汉字,在骨架图形的基础上,把手写汉字看作孤枝、孤环和部件的集合,并定义三者之间的方位关系,从而建立手写汉字的数学模型.基于迷种模型,进一步探讨一种新的识别方法以及新方法所使用的知识库的构造方法.实验表明,所提出的模型及识别方法对于小类数的手写汉字识别行之有效。  相似文献   

16.
提出了一种新的多层联系子层递归神经网络(MCLRNN)模型并融合藏文字丁的空间结构特征来进行联机手写藏文识别。改进后的网络结构具有多层联系子层来保留若干时刻的网络内部状态,从而可以更好地表征藏文字的各笔划特征以及笔划间的空间结构关系,同时,采用更适用于模式分类的交叉熵准则和改进的梯度下降算法来训练网络,加快了网络的收敛速度并增强其分类能力。仿真实验取得了令人满意的结果。  相似文献   

17.
基于汉字原型的手写汉字识别   总被引:6,自引:1,他引:6  
本文以现存三种汉字的计算机表示和两种传统的汉字结构分析方法进行评述,应用拓扑和几何的基本原理,分析了汉字结构及其制约关系,确定了四类组成汉字的基本关系,在此基础上实现了汉字原型,最后给出了汉字原型应用手写汉字识别的实例。  相似文献   

18.
手写体字符识别的多特征多分类器设计   总被引:4,自引:0,他引:4  
特征选取和分类器设计是字符识别系统设计的关键。文章针对手写体汉字和阿拉伯数字混和字符集的识别提出了依据不同的分类要求,分别选取不同的字符特征并采用神经网络多分类器进行识别的设计方法。实验结果表明,该方法用于手写体混合字符集的识别是行之有效的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号