首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Chemical engineering science》2001,56(21-22):6055-6061
Two dynamic models for a three-phase catalytic slurry reactor with appropriate solution procedures were developed in this work. The models consist of mass and heat balance equations for the catalyst particles, for the gas and liquid bulk phases as well as for the heat exchange through the jacket of the reactor. The models of the tubular reactor were applied to describe the dynamic behaviour of the reactor during the hydrogenation of o-cresol on Ni/SiO2 catalyst. These models differ in solid phase modelling, which allows to evaluate the reactor dynamic behaviour prediction capacity. The models successfully reproduce the main characteristics of the reactor dynamic behaviour.  相似文献   

2.
Continuous hydrogenation of sunflower seed oil has been carried out in a novel three-phase catalytic membrane hydrogenation reactor. The membrane reactor consisted of a membrane impregnated with Pd as the active catalyst, which provided a catalytic interface between the gas phase (H2) and the oil. Hydrogenations were carried out at different pressures, temperatures, and selectivities, and the formation of trans isomers was monitored during the hydrogenation runs. For the three-phase catalytic membrane reactor, interfacial transport resistances and intraparticle diffusion limitations did not influence the hydrogenation reaction. Hydrogenation runs under kinetically controlled conditions showed that oleic and elaidic acid were not hydrogenated in the presence of linoleic acid. Initial formation of stearic acid was caused by direct conversion of linoleic acid into stearic acid by a shunt reaction. Furthermore, high selectivities led to high trans levels, which is in accordance with the many published data on hydrogenation of vegetable oils in slurry reactors. Finally, the catalytic membrane showed severe catalyst deactivation. Only partial recovery of the catalyst activity was possible.  相似文献   

3.
A series of bifunctional Cu–ZnO–ZrO2/H-Y catalysts of different compositions were prepared by coprecipitating sedimentation method and were characterized by surface area and XRD analyses. The catalytic performance in synthesis of tetrahydrofuran was evaluated and optimized in a three-phase slurry batch reactor. The experimental results showed that the appropriate ratio of Cu/ZnO in the hydrogenation catalyst was 50/45, for which the conversion of maleic anhydride (MA) and selectivity of tetrahydrofuran (THF) reached 100% and 46%, respectively, at 50 bar and 493 K after 6 h of operation. Also, according to these results, it was demonstrated that the incorporation of zirconium oxide in the catalyst formulation enhanced the catalytic activity, and tetrahydrofuran selectivity was increased to 55%. Ultimately, it was concluded that the bifunctional catalyst of Cu–ZnO–ZrO2/H-Y was an appropriate catalyst to produce THF from MA with high activity, selectivity and stability.  相似文献   

4.
Utilizing volatile renewable energy sources (e.g., solar, wind) for chemical production systems requires a deeper understanding of their dynamic operation modes. Taking the example of a methanation reactor in the context of power‐to‐gas applications, a dynamic optimization approach is used to identify control trajectories for a time optimal reactor start‐up avoiding distinct hot spot formation. For the optimization, we develop a dynamic, two‐dimensional model of a fixed‐bed tube reactor for carbon dioxide methanation which is based on the reaction scheme of the underlying exothermic Sabatier reaction mechanism. While controlling dynamic hot spot formation inside the catalyst bed, we prove the applicability of our methodology and investigate the feasibility of dynamic carbon dioxide methanation. © 2016 American Institute of Chemical Engineers AIChE J, 63: 23–31, 2017  相似文献   

5.
Multiscale models have been developed to simulate the behavior of spatially‐heterogeneous porous catalytic flow reactors, i.e., multiscale reactors whose concentrations are spatially‐dependent. While such a model provides an adequate representation of the catalytic reactor, model‐plant mismatch can significantly affect the reactor's performance in control and optimization applications. In this work, power series expansion (PSE) is applied to efficiently propagate parametric uncertainty throughout the spatial domain of a heterogeneous multiscale catalytic reactor model. The PSE‐based uncertainty analysis is used to evaluate and compare the effects of uncertainty in kinetic parameters on the chemical species concentrations throughout the length of the reactor. These analyses reveal that uncertainty in the kinetic parameters and in the catalyst pore radius have a substantial effect on the reactor performance. The application of the uncertainty quantification methodology is illustrated through a robust optimization formulation that aims to maximize productivity in the presence of uncertainty in the parameters. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2374–2390, 2016  相似文献   

6.
针对气液固三相浆态床催化反应中,传递、反应、催化剂的原位表征均比较复杂的问题,为了有利于气、固相均匀分散于液相和反应温度在反应器中实现等温,通过对气液固三相反应工艺特性和反应器性能要求的分析,对微型气液固三相浆态床反应器进行了优化。根据微型浆态床对气液固三相反应分析的要求,采用图像法研究了分布器为G1、G2、G3,砂板直径为2、2.5、3 cm反应器中的流体力学性能特征,考察了气体流速、温度、反应器直径及气体分布器对气含率、气泡尺寸、气泡上升速率以及气泡分布的影响,并进行流体动力学模拟计算,确定了微型浆态床反应器的直径为2 cm,气体分布器为G3砂板的反应器结构,该反应器可以应用于反应过程中间态及液体产物生成过程的测试。  相似文献   

7.
王弘轼  朱炳辰 《化工学报》2002,53(2):116-121
建立了加压三相鼓泡淤浆床环氧乙烷合成反应器的数学模型 ,计入了催化剂颗粒在床层中沉降形成沿床高浓度分布对反应的影响以及由于惰性液相载体部分返混对传递的影响 ,进一步利用经实验验证的上述数学模型模拟不同表观气速、床高、反应器直径 (扣除传热元件截面积 )、进口乙烯摩尔分数等参数对床层中催化剂浓度随床高的分布、出口环氧乙烷摩尔分数、环氧乙烷选择率以及单位质量催化剂环氧乙烷年产量的影响 .通过模拟分析预示了工业三相床环氧乙烷反应器的合理尺寸、表观气速、环氧乙烷选择率以及时空产率 ,为工业化提供必要的设计依据  相似文献   

8.
Platinum catalyst deactivation during aqueous alcohol oxidation is discussed, using the selective oxidation of methyl α- -glucopyranoside as an example. The most important causes of platinum deactivation are catalyst over-oxidation and catalyst poisoning. Deactivation by over-oxidation can be reversed by applying a redox-cycle, i.e. cyclic exposure to oxidative and reductive circumstances. A kinetic model for methyl α- -glucopyranoside oxidation, platinum deactivation, and reactivation, based on electrochemistry is presented and implemented into a three-phase stirred slurry reactor model, showing the advantages of applying redox cycles.  相似文献   

9.
The dynamic operation of an ideal continuous-flow stirred tank slurry reactor for propylene polymerization has been studied. A simple model is developed, which could be used for optimal computer control using advanced strategies. Step increases in input feed rates of propylene, solvent, and catalyst are used as the stimuli or forcing functions. It is assumed that the volume of the slurry in the reactor is maintained constant during the period. Responses of three output variables are studied, namely, monomer concentration in the liquid, volume-fraction of solids in the exiting slurry, and average mass fraction of catalyst in the exiting macroparticles. It is found that the transients last for about five times the mean residence time of the reactor. Competing effects of changes in the diffusional resistance, number density of catalyst particles, and washout and dilution effects lead to interesting dynamic results.  相似文献   

10.
Flow properties of gas phase reactants such as size, rising velocity and frequency were investigated in simulated three-phase slurry bubble column reactors. Effects of gas velocity, reactor pressure, liquid viscosity, solid content in the slurry phase and column diameter on the flow properties of a gas reactant were determined. The multiple effects of operating variables on the bubble properties were well visualized by means of contour maps. The effects of operating variables on the flow properties of bubbles changed with changing column diameter of the reactor. The size, rising velocity and frequency of reactant gas bubbles were well correlated in terms of operating variables including column diameter of the reactor. This work was presented at the 7 th China-Korea Workshop on Clean Energy Technology held at Taiyuan, Shanxi, China, June 26–28, 2008.  相似文献   

11.
刘荣杰  王超  田红丽  李平  马平 《应用化工》2012,41(6):1114-1116
采用自制的镍催化剂,以双丙酮醇为原料,选用气液固三相淤浆床反应器催化合成2-甲基-2,4-戊二醇,在反应压力1.5~2.0 MPa,反应温度100~120℃,搅拌速度480 r/min条件下,建立合成2-甲基-2,4-戊二醇的动力学模型,可以指导合成工艺放大和工业化生产。  相似文献   

12.
动态方法测定吸附和表面反应速率   总被引:1,自引:0,他引:1  
本文较详细地综述了在近些年来刚刚发展起来的能用于分离测定非均相催化反应中的吸附和表面反应速率的三种动态分析方法:催化反应色谱技术,动态一稳态法和浆化反应器中的动态分析。文中不仅介绍了三种方法的基本理论和一些有代表性的实验结果,也指出了它们在研究催化反应动力学和机理以及催化剂制备变量对其影响方面的重要意义和前景。  相似文献   

13.
The three-phase catalytic hydrogenation (TPCH) of α-methylstyrene using supercritical carbon dioxide (scCO2) in a slurry reactor is reported. Kinetic data are presented for the reaction at 323 K over the range of pressure from 7.0 to 13.0 MPa using a carbon-supported palladium catalyst. The experimental data are fitted to a first-order power-law model. A detailed explanation of the methodology used to isolate the effect of CO2 on the rate of reaction is presented. Particular attention is given to the phase behaviour of the reaction system and the volumetric expansion of the liquid phase with CO2. It is shown that scCO2 significantly enhances the rate of reaction. This effect is attributed to the enhancement of the solubility of hydrogen in the liquid phase.  相似文献   

14.
This article presents an artificial intelligence‐based process modeling and optimization strategies, namely support vector regression–genetic algorithm (SVR‐GA) for modeling and optimization of catalytic industrial ethylene oxide (EO) reactor. In the SVR‐GA approach, an SVR model is constructed for correlating process data comprising values of operating and performance variables. Next, model inputs describing process operating variables are optimized using Genetic Algorithm (GAs) with a view to maximize the process performance. The GA possesses certain unique advantages over the commonly used gradient‐based deterministic optimization algorithms The SVR‐GA is a new strategy for chemical process modeling and optimization. The major advantage of the strategies is that modeling and optimization can be conducted exclusively from the historic process data wherein the detailed knowledge of process phenomenology (reaction mechanism, kinetics, etc.) is not required. Using SVR‐GA strategy, a number of sets of optimized operating conditions leading to maximized EO production and catalyst selectivity were obtained. The optimized solutions when verified in actual plant resulted in a significant improvement in the EO production rate and catalyst selectivity.  相似文献   

15.
A high aspect ratio chemical reactor for reacting a liquid with a gas in the presence of a finely divided catalyst was tested. The gas was sparged into the bottom of a tubular reactor with the slurry of liquid and catalyst flowing countercurrent to the gas. The liquid phase hydrogenation of alpha-methylstyrene to cumene on a Pd. catalyst was studied in semibatch operation of the reactor with slurry recycle. The reacor was 1 1/2-in. I.D. by 6-ft. long. The following variables were studied at a temperature of 28°C and a pressure of 1 atm: superficial gas velocities of 1.1 to 3.3 cm/sec., and catalyst loadings from 0.4 to 2.0 gm. catalyst per liter. A model of the reactor was developed and successfully compared with the data.  相似文献   

16.
This work presents the optimization of the operating conditions of a membrane reactor for the oxidative dehydrogenation of ethane. The catalytic membrane reactor is based on a mixed ionic–electronic conducting material, i.e. Ba0.5Sr0.5Co0.8Fe0.2Oδ−3, which presents high oxygen flux above 750 °C under sufficient chemical potential gradient. Specifically, diluted ethane is fed into the reactor chamber and air (or diluted air) is flushed to the other side of the membrane. A framework based on Soft Computing techniques has been used to maximize the ethylene yield by simultaneously varying five operation variables: nominal reactor temperature (Temp); gas flow in the reaction compartment (QHC); gas flow in the oxygen-rich compartment (QAir); ethane concentration in the reaction compartment (%C2H6); and oxygen concentration in oxygen-rich compartment (%O2). The optimization tool combines a genetic algorithm guided by a neural network model. This shows how the neural network model for this particular problem is obtained and the analysis of its behavior along the optimization process. The optimization process is analyzed in terms of: (1) catalytic figures of merit, i.e., evolution of yield and selectivity towards different products and (2) framework behavior and variable significance. The two experimental areas maximizing the ethylene yield are explored and analyzed. The highest yield reached in the optimization process exceeded 87%.  相似文献   

17.
The intrinsic kinetics of the three-phase dimethyl ether (DME) synthesis from syngas over a bi-functional catalyst has been investigated in a agitated slurry reactor at 20–50 bar, 200–240 °C and H2/CO feed ratio from 1 to 2. The bi-functional catalyst was prepared by physical mixing of CuO/ZnO/Al2O3 as methanol synthesis catalyst and H-ZSM-5 as methanol dehydration catalyst. The three reactions including methanol synthesis from CO and H2, methanol dehydration and water gas shift reaction were chosen as the independent reactions. A kinetic model for the combined methanol and DME synthesis based on a methanol synthesis model proposed by Graaf et al. [G.H. Graaf, E.J. Stamhuis, A.A.C.M. Beenackers, Kinetics of low pressure methanol synthesis, Chem. Eng. Sci. 43 (12) (1988) 3185; G.H. Graaf, E.J. Stamhuis, A.A.C.M. Beenackers, Kinetics of the three-phase methanol synthesis, Chem. Eng. Sci. 43 (8) (1988) 2161] and a methanol dehydration model by Bercic and Levec [G. Bercic, J. Levec, Intrinsic and global reaction rate of methanol dehydration over γ-Al2O3 pellets, Ind. Eng. Chem. Res. 31 (1992) 399–434] has been fitted our experimental data. The obtained coefficients in equations follow the Arrhenius and the Van’t Hoff relations. The calculated apparent activation energy of methanol synthesis reaction and methanol dehydration reaction are 115 kJ/mol and 82 kJ/mol, respectively. Also, the effects of different parameters on the reactor performance have been investigated based on the presented kinetic model.  相似文献   

18.
A novel methodology has been developed to design an optimum heterogeneous catalytic reactor, by considering non‐uniform catalyst pellet under shell‐progressive catalyst deactivation. Various types of non‐uniform catalyst pellets are modelled in combination with reactor design. For example, typical non‐uniform catalyst pellets such as egg‐yolk, egg‐shell and middle‐peak distribution are developed as well as step‐type distribution. A progressive poisoning behavior is included to the model to produce correct effectiveness factor from non‐uniform catalyst pellet. As opposed to numerical experiment with limited type of kinetic application to the model in the past, this paper shows a new methodology to include any types of kinetic reactions for the modeling of the reactor with non‐uniform catalyst pellet and shell‐progressive poisoning. For an optimum reactor design, reactor and catalyst variables are considered at the same time. For example, active layer thickness and location inside pellet are optimised together with reactor temperature for the maximisation of the reactor performance. Furthermore, the temperature control strategy over the reactor operation period is added to the optimization, which extends the model to three dimensions. A computational burden has been a major concern for the optimization, and innovative methodology is adopted. Application of profile based synthesis with the combination of SA (Simulated Annealing) and SQP (Successive Quadratic Programming) allows more efficient computation not only at steady state but also in dynamic status over the catalyst lifetime. A Benzene hydrogenation reaction in an industry scale fixed‐bed reactor is used as a case study for illustration.  相似文献   

19.
王存文  丁百全  朱炳辰  房鼎业 《化工学报》2001,52(12):1090-1094
利用经热模试验验证的鼓泡淤浆床甲醇合成的数学模型 ,讨论了不同参数 ,如表观气速、反应器直径、床层高度等对床层颗粒轴向分布的影响规律 ,确定了万吨级三相床甲醇合成工业示范装置的主要结构参数和操作参数范围 .对两种不同工业原料气分别进行了模拟计算 .模拟结果表明 ,在三相床甲醇合成过程中 ,压力的影响最为显著 ,反应器内床层高度亦是较为重要的可调节参数 .在本文的操作条件下 ,当甲醇产量达到 1× 10 4t·a-1时 ,在较广的温度和压力范围内 ,对两种原料气 ,出口甲醇摩尔分数在 7%~ 10 % ,CO转化率为 40 %~5 0 %  相似文献   

20.
In slurry and gas phase catalytic ethylene polymerization processes, aluminum alkyl (AlR3) compounds are usually present inside the reactor and their role either as co‐catalyst or scavenger is of considerable importance. Silica supported metallocene/methyl aluminoxane (MAO) catalysts show specific interactions with AlR3 compounds. Therefore, this study shows an attempt to analyze and compare the effect of concentration as well as type of commonly used AlR3 on slurry phase ethylene homopolymerization kinetics of silica supported (n‐BuCp)2ZrCl2/MAO catalyst. The obtained results indicate that the lower the concentration of smaller AlR3 compounds, the higher the instantaneous catalytic activity. Concerning the polymer particle size distributions, a rise in fines generation has been observed with increasing AlR3 content inside the reactor. Finally, it has been shown that the addition of 2,6‐di‐tert‐butyl‐4‐methylphenol (a substituted phenol) into the reactor containing AlR3 reduces the influence of AlR3 compounds on the reaction kinetics of silica supported metallocene/MAO catalysts. Polyethylene properties remain similar in all the studied scenarios. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45670.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号