首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pure culture of Rhodobacter sphaeroides (NRRL- B1727) was used for continuous photo-fermentation of volatile fatty acids (VFA) present in the dark fermentation effluent of ground wheat starch. The feed contained 1950 ± 50 mg L−1 total VFA with some nutrient supplementation. Hydraulic residence time (HRT) was varied between 24 and 120 hours. The highest steady-state daily hydrogen production (55 ml d−1) and hydrogen yield (185 ml H2 g−1 VFA) were obtained at HRT = 72 hours (3 days). Biomass concentration increased with increasing HRT. Volumetric and specific hydrogen formation rates were also maximum at HRT = 72 h. High extent of TVFA fermentation at HRT = 72 h resulted in high hydrogen gas production.  相似文献   

2.
Hydrogen gas production from acid hydrolyzed waste wheat starch by combined dark and photo-fermentation was investigated in continuous mode with periodic feeding and effluent removal. A mixture of heat treated anaerobic sludge and Rhodobacter sphaeroides (NRRL-B 1727) were used as the seed culture for dark and light fermentations, respectively with biomass ratio of Rhodobacter/sludge = 3. Hydraulic residence time (HRT) was changed between 1 and 8 days by adjusting the feeding periods. Ground waste wheat was acid hydrolyzed at pH = 3 and 121 °C for 30 min using an autoclave and the resulting sugar solution was used as the substrate for combined fermentation after pH adjustment and nutrient addition. The highest daily hydrogen gas production (41 ml d−1), hydrogen yield (470 ml g−1 total sugar = 3.4 mol H2 mol−1glucose), volumetric and specific hydrogen production rates were obtained at the HRT of 8 days. The highest biomass and the lowest total volatile fatty acids (TVFA) concentrations were also realized at HRT = 8 days indicating VFA fermentation by Rhodobacter sp. at high HRTs. The lowest total sugar loading rate of 0.625 g L−1 d−1 resulted in the highest hydrogen yield and formation rate. Hydrogen gas production by combined fermentation with periodic feeding was proven to be an effective method resulting in high hydrogen yields at long HRTs.  相似文献   

3.
Dark fermentation of acid hydrolyzed ground wheat starch for bio-hydrogen production by periodic feeding and effluent removal was investigated at different feeding intervals. Ground wheat was acid hydrolyzed at pH = 3 and T = 121 °C for 30 min using an autoclave. The resulting sugar solution was subjected to dark fermentation with periodic feeding and effluent removal. The feed solution contained 9 ± 0.5 g L−1 total sugar supplemented with some nutrients. Depending on the feeding intervals hydraulic residence time (HRT) was varied between 6 and 60 h. Steady-state daily hydrogen production increased with decreasing HRT. The highest daily hydrogen production (305 ml d−1) and volumetric hydrogen production rate (1220 ml H2 L−1 d−1) were obtained at HRT of 6 h. Hydrogen yield (130 ml H2 g−1 total sugar) reached the highest level at HRT = 24 h. Effluent total sugar concentration decreased, biomass concentration and yield increased with increasing HRT indicating more effective sugar fermentation at high HRTs. Dark fermentation end product profile shifted from acetic to butyric acid with increasing HRT. High acetic/butyric acid ratio obtained at low HRTs resulted in high hydrogen yields.  相似文献   

4.
Dark fermentation effluent of wheat powder solution was subjected to light fermentation for bio-hydrogen production using different light sources and intensities. Tungsten, fluorescent, infrared (IR), halogen lamps were used as light sources with a light intensity of 270 Wm−2 along with sunlight. Pure culture of Rhodobacter sphaeroides-RV was used in batch light fermentation experiments. Halogen lamp was found to be the most suitable light source yielding the highest cumulative hydrogen formation (CHF, 252 ml) and yield (781 ml H2 g−1 TVFA). In the second set of experiments, light fermentations were performed at different light intensities (1–10 klux) using halogen lamp. The optimum light intensity was found to be 5 klux (approx. 176 Wm−2) resulting in the highest CHF (88 ml) and hydrogen yield (1037 ml H2 g−1TVFA). Hydrogen formation was limited by the availability of light at low light intensities below 5 klux and was inhibited by the excess light above 5 klux.  相似文献   

5.
In the present study, the growth and hydrogen production of Rhodobacter sphaeroides O.U. 001, was investigated in media containing five different volatile fatty acids (VFA) individually (malate, acetate, propionate, butyrate and lactate) and in media containing mixtures of these acids that reflect the composition of dark fermentation effluents. The highest hydrogen production rate was obtained in malate (24 mlhydrogen/lreactor h) and the highest biomass concentration was obtained in acetate containing media (1.65 g/l). The substrate conversion efficiencies for different volatile fatty acids were found to vary between 14 and 50%. The malate and butyrate consumption rates were first order with consumption rate constants of 0.026 h−1 and 0.015 h−1, respectively. In the case of substrate mixtures, it was observed that the bacteria consumed acetate first, followed by propionate and then butyrate. It was also found that the consumption rate of the main substrate significantly increased when the minor substrates were depleted.  相似文献   

6.
Batch dark fermentation experiments were performed to investigate the effects of biomass and substrate concentration on bio-hydrogen production from acid hydrolyzed ground wheat at 55 °C. In the first set of experiments, the substrate concentration was constant at 20 g total sugar L−1 and biomass concentration was varied between 0.52 and 2.58 g L−1. Total sugar concentration was varied between 4.2 and 23.7 g L−1 in the second set of experiments with a 1.5 g L−1 constant biomass concentration. The highest cumulative hydrogen formation (582 mL, 30 °C, 1 atm), formation rate (5.43 mL h−1) and final total volatile fatty acid (TVFA) concentration (6.54 g L−1) were obtained with 1.32 g L−1 biomass concentration. In variable substrate concentration experiments, the highest cumulative hydrogen (365 mL) and TVFA concentration (4.8 g L−1) were obtained with 19.25 g L−1 initial total sugar concentration while hydrogen gas formation rate (12.95 mL h−1) and the yield (200 mL H2 g−1 total sugar) were the highest with 4.2 g L−1 total sugar concentration.  相似文献   

7.
Effects of N/C, P/C and Fe(II)/C ratios in fermentation medium on biohydrogen production by dark fermentation of acid-hydrolyzed wheat starch was investigated. The powdered wheat was autoclaved at pH = 3 and 90 °C for 15 min and the resulting sugar solution was fermented after external addition of N, P and Fe(II) to overcome nutrient limitations. Box–Wilson statistical experiment design was used by considering the N/C (0–0.05, w w−1), P/C (0–0.02) and Fe(II)/C (0–0.03) ratios as the independent variables while the hydrogen yield and specific hydrogen production rate (SHPR) were the objective functions to be optimized. A quadratic response function was used to correlate the response functions with the independent variables. Low levels of the variables (N/C < 0.02, P/C < 0.01, Fe(II)/C < 0.01) resulted in low hydrogen yield and SHPR due to nutrient limitations and high levels of nutrients caused inhibitions. The optimum conditions yielding the maximum hydrogen yield (Y = 2.84 mol H2 mol−1 glucose) were N/C = 0.02, P/C = 0.008 and Fe(II)/C = 0.015. The maximum SHPR (96 mL H2 g−1 biomass h−1) was obtained at N/C = 0.025, P/C = 0.008 and Fe(II)/C = 0.015 (w w−1).  相似文献   

8.
One of the challenges in the development of integrated dark and photofermentative biological hydrogen production systems is the presence of ammonium ions in dark fermentation effluent (DFE). Ammonium strongly inhibits the sequential photofermentation process, and so its removal is required for successful process integration. In this study, the removal of ammonium ions from molasses DFE using a natural zeolite (clinoptilolite) was investigated. The samples were treated with batch suspensions of Na-form clinoptilolite. The ammonium ion concentration could be reduced from 7.60 mM to 1.60 mM and from 12.30 mM to 2.40 mM for two different samples. Photofermentative hydrogen production on treated and untreated molasses DFE samples were investigated in batch photobioreactors by an uptake hydrogenase deleted (hup) mutant strain of Rhodobacter capsulatus. Maximum hydrogen productivities of 1.11 mmol H2/Lc·h and 1.16 mmol H2/Lc·h and molar yields of 79% and 90% were attained in the treated DFE samples, while the untreated samples resulted in no hydrogen production. The results showed that ammonium ions in molasses DFE could be effectively removed using clinoptilolite by applying a cost-effective, simple batch process.  相似文献   

9.
Waste ground wheat was subjected to acid hydrolysis (pH = 3.0) at 90 °C for 15 min using an autoclave. The sugar solution obtained from acid hydrolysis was subjected to dark fermentation for hydrogen gas production after neutralization. In the first set of experiments, initial total sugar concentration was varied between 3.9 and 27.5 g L−1 at constant biomass (cell) concentration of 1.3 g L−1. Biomass concentration was varied between 0.28 g L−1 and 1.38 g L−1 at initial total sugar concentration of 7.2 ± 0.2 g L−1 in the second set of experiments. The highest hydrogen yield (1.46 mol H2 mol−1 glucose) and the specific formation rate (83.6 ml H2 g−1 cell h−1) were obtained with 10 g L−1 initial total sugar concentration. Biomass (cell) concentration affected the specific hydrogen production rate yielding the highest rate (1221 ml H2 g−1 cell h−1) and the yield at the lowest (0.28 g L−1) initial biomass concentration. The most suitable Xo/So ratio, maximizing the yield and specific rate of hydrogen gas formation was Xo/So = 0.037. Dark fermentation of acid hydrolyzed ground wheat was found to be more beneficial as compared to simultaneous bacterial hydrolysis and fermentation.  相似文献   

10.
Dark fermentation effluents of wheat powder (WP) solution containing different concentrations of volatile fatty acids (VFAs) were subjected to low voltage (1–3 V) DC current to produce hydrogen gas. Graphite and copper electrodes were tested and the copper electrode was found to be more effective due to higher electrical conductivity. The effects of solution pH (2–7), applied voltage (1–3 V) and the total VFA (TVFA) concentration (1–5 g L−1) on hydrogen gas production were investigated. Hydrogen production increased with decreasing pH and became maximum at pH = 2. Increases in applied voltage and the TVFA concentration also increased the cumulative hydrogen formation. The most suitable conditions for the highest cumulative hydrogen production was pH = 2, with 3 V applied voltage and 5 g TVFA L−1. Up to 110 ml hydrogen gas was obtained with 5 g L−1 TVFA at pH = 5.8 and 2 V applied voltage within 37.5 h. The highest energy efficiency (56%) was obtained with the 2 V applied voltage and 10.85 g L−1 TVFA. Hydrogen production by electrolysis of water in control experiments was negligible for pH > 4. Hydrogen production by electrohydrolysis of VFA containing anaerobic treatment effluents was found to be an effective method with high energy efficiency.  相似文献   

11.
Dark fermentation experiments were performed for bio-hydrogen production from ground wheat starch solution (10 ± 1 g l−1) using periodic feeding and effluent removal. A mixed culture of Clostridium butyricum-NRRL 1024 and Clostridium pasteurianum-NRRL B-598 were used with an initial biomass ratio of 1/1.Effects of wheat starch loading rate on the rate and yield of bio-hydrogen formation were investigated. Substrate loading rate was varied between 0.54 and 5.52 g d−1 (HRT = 6-60 h). The highest hydrogen formation rate (280 ml d−1), volumetric hydrogen formation rate (1857 ml H2 l−1 d−1) and volatile fatty acids (VFAs) concentration were obtained with a substrate loading rate of 5.52 g d−1 (HRT = 6 h). The highest hydrogen yield (109 ml H2 g TS −1) was obtained with a substrate loading rate of 1.38 g d−1.  相似文献   

12.
Hydrogen gas production potentials of acid-hydrolyzed and boiled ground wheat were compared in batch dark fermentations under mesophilic (37 °C) and thermophilic (55 °C) conditions. Heat-treated anaerobic sludge was used as the inoculum and the hydrolyzed ground wheat was supplemented by other nutrients. The highest cumulative hydrogen gas production (752 ml) was obtained from the acid-hydrolyzed ground wheat starch at 55 °C and the lowest (112 ml) was with the boiled wheat starch within 10 days. The highest rate of hydrogen gas formation (7.42 ml H2 h−1) was obtained with the acid-hydrolyzed and the lowest (1.12 ml H2 h−1) with the boiled wheat at 55 °C. The highest hydrogen gas yield (333 ml H2 g−1 total sugar or 2.40 mol H2 mol−1 glucose) and final total volatile fatty acid (TVFA) concentration (10.08 g L−1) were also obtained with the acid-hydrolyzed wheat under thermophilic conditions (55 °C). Dark fermentation of acid-hydrolyzed ground wheat under thermophilic conditions (55 °C) was proven to be more beneficial as compared to mesophilic or thermophilic fermentation of boiled (partially hydrolyzed) wheat starch.  相似文献   

13.
The aim of the study is biohydrogen production from hydrolyzed waste wheat by dark fermentation in a continuously operated up-flow packed bed reactor. For this purpose, the effect of hydraulic retention time (HRT) on the rate (RH2) and yield (YH2) of hydrogen gas formation were investigated. In order to determine the most suitable hydraulic retention time yielding the highest hydrogen formation, the reactor was operated between HRT = 1 h and 8 h. The substrate was the acid hydrolyzed wheat powder (AHWP). Waste wheat was sieved down to 70 μm size (less than 200 mesh) and acid hydrolyzed at pH = 2 and 90 °C in an autoclave for 15 min. The sugar solution obtained from hydrolysis of waste wheat was used as substrate at the constant concentration of 15 g/L after neutralization and nutrient addition for biohydrogen production by dark fermentation. The microbial growth support particle was aquarium biological sponge (ABS). Heat-treated anaerobic sludge was used as inoculum. Total gas volume and hydrogen percentage in total gas, hydrogen gas volume, total sugar and total volatile fatty acid concentrations in the feed and in the effluent of the system were monitored daily throughout the experiments. The highest yield and rate of productions were obtained as YH2 = 645.7 mL/g TS and RH2 = 2.51 L H2/L d at HRT = 3 h, respectively.  相似文献   

14.
Three different Rhodobacter sphaeroides (RS) strains (RS–NRRL, RS–DSMZ and RS–RV) and their combinations were used for light fermentation of dark fermentation effluent of ground wheat containing volatile fatty acids (VFA). In terms of cumulative hydrogen formation, RS–NRRL performed better than the other two strains producing 48 ml H2 in 180 h. However, RS–RV resulted in the highest hydrogen yield of 250 ml H2 g−1 TVFA. Specific hydrogen production rate (SHPR) with the RS–NRRL was also better in comparison to the others (13.8 ml H2 g−1 biomass h−1). When combinations of those three strains were used, RS–RV + RS–DSMZ resulted in the highest cumulative hydrogen formation (90 ml H2 in 330 h). However, hydrogen yield (693 ml H2 g−1 TVFA) and SHPR (12.1 ml H2 g−1 biomass h−1) were higher with the combination of the three different strains. On the basis of Gompertz equation coefficients mixed culture of the three different strains gave the highest cumulative hydrogen and formation rate probably due to synergistic interaction among the strains. The effects of initial TVFA and NH4–N concentrations on hydrogen formation were investigated for the mixed culture of the three strains. The optimum TVFA and NH4–N concentrations maximizing the hydrogen formation were determined as 2350 and 47 mg L−1, respectively.  相似文献   

15.
In the present study, photofermentative hydrogen production on thermophilic dark fermentation effluent (DFE) of sugar beet thick juice was investigated in a solar fed-batch panel photobioreactor (PBR) using Rhodobacter capsulatus YO3 (hup) during summer 2009 in Ankara, Turkey. The DFE was obtained by continuous dark fermentation of sugar beet thick juice by extreme thermophile Caldicellulosiruptor saccharolyticus and it contains acetate (125 mM) and NH4+ (7.7 mM) as the main carbon and nitrogen sources, respectively. The photofermentation process was done in a 4 L plexiglas panel PBR which was daily fed at a rate of 10% of the PBR volume. The DFE was diluted 3 times to adjust the acetate concentration to approximately 40 mM and supplemented with potassium phosphate buffer, Fe and Mo. In order to control the temperature, cooling was provided by recirculating chilled water through a tubing inside the reactor. Hydrogen productivity of 1.12 mmol/Lc/h and molar yield of 77% of theoretical maximum over consumed substrate were attained over 15 days of operation. The results indicated that Rb. capsulatus YO3 could effectively utilize the DFE of sugar beet thick juice for growth and hydrogen production, therefore facilitating the integration of the dark and photo-fermentation processes for sustainable biohydrogen production.  相似文献   

16.
Hydrogen gas production from sugar solution derived from acid hydrolysis of ground wheat starch by photo-fermentation was investigated. Three different pure strains of Rhodobacter sphaeroides (RV, NRLL and DSZM) were used in batch experiments to select the most suitable strain. The ground wheat was hydrolyzed in acid solution at pH = 3 and 90 °C in an autoclave for 15 min. The resulting sugar solution was used for hydrogen production by photo-fermentation after neutralization and nutrient addition. R. sphaeroides RV resulted in the highest cumulative hydrogen gas formation (178 ml), hydrogen yield (1.23 mol H2 mol−1 glucose) and specific hydrogen production rate (46 ml H2 g−1 biomass h−1) at 5 g l−1 initial total sugar concentration among the other pure cultures. Effects of initial sugar concentration on photo-fermentation performance were investigated by varying sugar concentration between 2.2 and 13 g l−1 using the pure culture of R. sphaeroides RV. Cumulative hydrogen volume increased from 30 to 232 ml when total sugar concentration was increased from 2.2 to 8.5 g l−1. Further increases in initial sugar concentration resulted in decreases in cumulative hydrogen formation. The highest hydrogen formation rate (3.69 ml h−1) and yield (1.23 mol H2 mol−1 glucose) were obtained at a sugar concentration of 5 g l−1.  相似文献   

17.
Hydrogen formation performances of different anaerobic bacteria were investigated in batch dark fermentation of waste wheat powder solution (WPS). Serum bottles containing wheat powder were inoculated with pure cultures of Clostridium acetobutylicum (CAB), Clostridium butyricum (CB), Enterobacter aerogenes (EA), heat-treated anaerobic sludge (ANS) and a mixture of those cultures (MIX). Cumulative hydrogen formation (CHF), hydrogen yield (HY) and specific hydrogen production rate (SHPR) were determined for every culture. The heat-treated anaerobic sludge was found to be the most effective culture with a cumulative hydrogen formation of 560 ml, hydrogen yield of 223 ml H2 g−1 starch and a specific hydrogen production rate of 32.1 ml H2 g−1 h−1.  相似文献   

18.
Combined dark and photo-fermentation of ground wheat starch was carried out by using different light sources, intensities and lighting regime. A mixture of heat treated anaerobic sludge and Rhodobacter sphaeroides-RV with a certain light/dark bacteria ratio was used in batch experiments. Tungsten, fluorescent, infrared (IR), tungsten + infrared, halogen lamps were used as light sources with a light intensity of 270 Wm−2 along with sunlight. Halogen lamp was found to be the most suitable light source yielding the highest cumulative hydrogen formation (178 ml) and yield (218 ml g−1 starch). Combined fermentations were performed at different light intensities (1–10 klux) using the halogen lamp in the second set of experiments. The optimum light intensity was found to be 10 klux (approx. 352 Wm−2) resulting in the highest cumulative hydrogen (111 ml) and hydrogen yield (139 ml H2 g−1 starch). Hydrogen formation was limited by the availability of light at low light intensities below 10 klux. Durations of dark/light cycles were changed to determine the most suitable lighting regime. Hydrogen gas formation increased with increasing cycle time and continuous lighting resulted in the highest cumulative hydrogen formation and hydrogen yield.  相似文献   

19.
A two-step process of sequential anaerobic (dark) and photo-heterotrophic fermentation was employed to produce hydrogen from cassava and food waste. In dark fermentation, the average yield of hydrogen was approximately 199 ml H2 g−1 cassava and 220 ml H2 g−1 food waste. In subsequent photo-fermentation, the average yield of hydrogen from the effluent of dark fermentation was approximately 611 ml H2 g−1 cassava and 451 ml H2 g−1 food waste. The total hydrogen yield in the two-step process was estimated as 810 ml H2 g−1 cassava and 671 ml H2 g−1 food waste. Meanwhile, the COD decreased greatly with a removal efficiency of 84.3% in cassava batch and 80.2% in food waste batch. These results demonstrate that cassava and food waste could be ideal substrates for bio-hydrogen production. And a two-step process combining dark fermentation and photo-fermentation was highly improving both bio-hydrogen production and removal of substrates and fatty acids.  相似文献   

20.
The combination of dark and photo fermentation was studied with cassava starch as the substrate to increase the hydrogen yield and alleviate the environmental pollution. The different raw cassava starch concentrations of 10–25 g/l give different hydrogen yields in the dark fermentation inoculated with the mixed hydrogen-producing bacteria derived from the preheated activated sludge. The maximum hydrogen yield (HY) of 240.4 ml H2/g starch is obtained at the starch concentration of 10 g/l and the maximum hydrogen production rate (HPR) of 84.4 ml H2/l/h is obtained at the starch concentration of 25 g/l. When the cassava starch, which is gelatinized by heating or hydrolyzed with α-amylase and glucoamylase, is used as the substrate to produce hydrogen, the maximum HY respectively increases to 258.5 and 276.1 ml H2/g starch, and the maximum HPR respectively increases to 172 and 262.4 ml H2/l/h. Meanwhile, the lag time (λ) for hydrogen production decreases from 11 h to 8 h and 5 h respectively, and the fermentation duration decreases from 75–110 h to 44–68 h. The metabolite byproducts in the dark fermentation, which are mainly acetate and butyrate, are reused as the substrates in the photo fermentation inoculated with the Rhodopseudomonas palustris bacteria. The maximum HY and HPR are respectively 131.9 ml H2/g starch and 16.4 ml H2/l/h in the photo fermentation, and the highest utilization ratios of acetate and butyrate are respectively 89.3% and 98.5%. The maximum HY dramatically increases from 240.4 ml H2/g starch only in the dark fermentation to 402.3 ml H2/g starch in the combined dark and photo fermentation, while the energy conversion efficiency increases from 17.5–18.6% to 26.4–27.1% if only the heat value of cassava starch is considered as the input energy. When the input light energy in the photo fermentation is also taken into account, the whole energy conversion efficiency is 4.46–6.04%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号