首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
In this study, a single unit of planar micro-solid-oxide fuel cell (μSOFC) is investigated numerically to evaluate the influences of flow channel design, oxygen composition, and thermal operating conditions on cell performance. Four flow channel designs are examined under the co-flow configuration: serpentine, double serpentine, rod bundle, and oblique rib. For all designs, the contacts areas of interconnect to electrodes are kept consistent to maintain the ohmic losses at the same level. To characterize the mass transport effects, there are three different compositions, 100% O2, 50% O2/50% N2 and air, fed to the cathode inlet. Different thermal conditions, adiabatic and isothermal, are applied to the outer boundary of the μSOFC and the results are compared. The outcomes suggest that both thermal conditions and oxidant composition show remarkable influences on μSOFC performance. Under adiabatic conditions, the rise of cell temperature causes a decrease in reversible voltage, deteriorating the overall cell competence. When oxygen is diluted with nitrogen, local gas diffusion becomes dominant to the cathode reaction. Bulk flow, on the other hand, plays a minor role in cell performance since there is little deviation in the polarization curves for all flow channel designs, even at high current densities. For comparison, the flow visualization technique is employed to observe the transport phenomena in various flow channel designs. The flow patterns are found to resemble the concentration distribution, providing a useful tool to design μSOFCs.  相似文献   

2.
Metal-supported SOFC cells with Y2O3 stabilized ZrO2 as the electrolyte were prepared by a low cost and simple process involving tape casting, screen printing and co-firing. The interfaces were well bonded after the reduction of NiO to Ni in the support and the anode. AC impedance was employed to estimate the cell polarizations under open circuit conditions. It was found that the electrode polarization resistance was high at low temperatures and became equivalent to the ohmic resistance at higher temperatures near 800°°C. The cell performance was evaluated with H2 as the fuel and air as the oxidant, and maximum power density between 0.23 and 0.80  W/cm2 was achieved in the temperature range of 650–800°C, which confirms the applicability of the cost-effective process in fabrication of metal-supported SOFC cells.  相似文献   

3.
Commercial double Perovskite Sr2Fe1.5Mo0.5O6-δ (SFM), a high performance and redox stable electrode material for solid oxide fuel cell (SOFC), has been used for the electrolyte (layer) -free fuel cell (EFFC) and also as the cathode for the electrolyte based SOFC in a comprehensive study. The EFFC with a homogeneous mixture of Ce0.8Sm0.2O2-δ (SDC) and SFM achieved a higher power density (841 mW cm?2) at 550 °C, while the SDC electrolyte based SOFC, using the SDC-SFM composite as cathode, just reached 326 mW cm?2 at the same temperature. The crystal structure and the morphology of the SFM-SDC composite were characterized by X-ray diffraction analysis (XRD), and scanning electron microscope (SEM), respectively. The electrochemical impedance spectroscopy (EIS) results showed that the charge transfer resistance of EFFCs were much lower than that of the electrolyte-based SOFC. To illustrate the operating principle of EFFC, we also conducted the rectification characteristics test, which confirms the existence of a Schottky junction structure to avoid the internal electron short circuiting. This work demonstrated advantages of the semiconductor-ionic SDC-SFM material for advanced EFFCs.  相似文献   

4.
《Journal of power sources》2004,133(2):169-174
Impedance measurements were carried out under practical power generation conditions in a disk-type SOFC, which may be utilized as a small-scale power generator. The tested cell was composed of doped lanthanum gallate (La0.8Sr0.2Ga0.8Mg0.15Co0.05O3−δ) as the electrolyte, Sm0.5Sr0.5CoO3 as the cathode electrode and Ni/Ce0.8Sm0.2O2 cermet as the anode electrode. The cell impedance was measured between 10 mHz and 10 kHz by varying the fuel utilization and gas flow rate and plotted in complex impedance diagrams. The observed impedance shows a large semi-circular pattern on the low frequency side. The semi-circular impedance, having a noticeably low characteristic frequency between 0.13 and 0.4 Hz, comes from the change in gas composition, originally caused by the cell reaction. The change in impedance with the fuel utilization (load current) and the gas flow rate agreed qualitatively well with the theoretical predictions from a simulation. This impedance was dominant under high fuel-utilization power-generation conditions. The impedance, which described the activation polarizations in the electrode reactions, was comparatively small and scarcely changed with the change in fuel utilization (load current) and gas flow rate.  相似文献   

5.
For Solid Oxide Fuel Cells (SOFCs) to become an economically attractive energy conversion technology, suitable materials and structures which enable operation at lower temperatures, while retaining high cell performance, must be developed. Recently, the perovskite-type La0.6Ca0.4Fe0.8Ni0.2O3 oxide has shown potential as an intermediate temperature SOFC cathode. An equivalent circuit describing the cathode polarization resistances was constructed from analyzing impedance spectra recorded at different temperatures in oxygen. A competitive electrode polarization resistance is reported for this oxygen electrode using a Ce0.8Gd0.2O1.9 electrolyte, determined by impedance spectroscopy studies of symmetrical cells sintered at 800 °C and 1000 °C. Scanning electron microscopy (SEM) studies of the symmetrical cells revealed the absence of any reaction layer between cathode and electrolyte, and a porous electrode microstructure even when sintered at a temperature of only 800 °C. The performance of this cathode shows favorable oxygen reduction reaction (ORR) properties potentially making it an excellent choice for IT-SOFC application.  相似文献   

6.
The cathode reaction mechanism of porous Sm0.5Sr0.5CoO3−δ, a mixed ionic and electronic conductor (MIEC), is studied through a comparison with the composite cathode Sm0.5Sr0.5CoO3−δ/Sm0.2Ce0.8O1.9. First, the cathodic behaviour of porous Sm0.5Sr0.5CoO3−δ and Sm0.5Sr0.5CoO3−δ/Sm0.2Ce0.8O1.9 are observed for micro-structure and impedance spectra according to Sm0.2Ce0.8O1.9 addition, thermal cycling and long-term properties. The cathode reaction mechanism is discussed in terms of frequency response, activation energy, reaction order and electrode resistance for different oxygen partial pressures p(O2) at various temperatures. Three elementary steps are considered to be involved in the cathodic reaction: (i) oxygen ion transfer at the cathode-electrolyte interface; (ii) oxygen ion conduction in the bulk cathode; (iii) gas phase diffusion of oxygen. A reaction model based on the empirical equivalent circuit is introduced and analyzed using the impedance spectra. The electrode resistance at high frequency (Rc,HF) in the impedance spectra represents reaction steps (i), due to its fast reaction rate. The electrode resistance at high frequency is independent of p(O2) at a constant temperature because the semicircle of Rc,HF in the complex plane of the impedance spectra is held constant for different values of p(O2). Reaction steps (ii) and (iii) are the dominant processes for a MIEC cathode, according to the analysis results. The proposed cathode reaction model and results for a solid oxide fuel cell (SOFC) well describe a MIEC cathode with high ionic conductivity, and assist the understanding of the MIEC cathode reaction mechanism.  相似文献   

7.
This paper presents a performance analysis of a planar solid oxide fuel cell (SOFC) with different support structures, i.e., electrode (anode and cathode) and electrolyte supports. An electrochemical model, taking into account structural and operational parameters and gas diffusion at the electrodes, is used to analyze the characteristics of the planar SOFC. Simulation results demonstrate that under cell operation at an intermediate temperature (1073 K), an anode-supported SOFC is superior to an electrolyte- and cathode-supported SOFC. Analysis of individual cell voltage loss indicates that ohmic loss dominates the performance of an electrolyte-supported SOFC whereas activation and ohmic overpotentials constitute the major loss in an electrode-supported counterpart. Sensitivity analyses of the anode-supported SOFC show that decreasing the electrolyte and anode thickness can improve cell performance. A decrease in operating temperature causes the cell to operate at a lower range of current density due to an increase in ohmic and activation overpotentials. Further, increasing the operating pressure and degree of pre-reforming reduces the concentration overpotential and thereby enhances cell performance.  相似文献   

8.
A mathematical model for the performance of the planar solid oxide fuel cell (SOFC) stack is described. The model considered the electric contact resistance between the electrode and interconnect rib, the gas transport in the electrodes, electronic and ionic conductions in the membrane-electrode assembly and the electrochemical reactions at the gas–electrode–electrolyte three phase boundaries. The model is capable of describing in detail the rib effect on the gas transport and the current distribution in the fuel cell. The contact resistance is found to be an important factor in limiting the SOFC performance. Based on the interplay of the concentration and ohmic polarizations, numerical results are provided for the optimal rib widths for different pitch sizes and different area specific contact resistance (ASRcontact). The optimal rib width is found to be linear to the pitch width for a given ASRcontact and the parameters for the linearity are given. The parameters are little affected by the hydrogen concentration and the thickness, porosity or conductivity of the cathode. The influence of the cathode thickness on the SOFC performance is also examined. Contrary to the common belief on the thin cathode (∼50 μm), thicker cathode layer (100–300 μm) is beneficial to the SOFC stack performance.  相似文献   

9.
A two-dimensional mechanistic model of a tubular solid oxide fuel cell (SOFC) considering momentum, energy, mass and charge transport is developed. The model geometry of a single cell comprises an air-preheating tube, air channel, fuel channel, anode, cathode and electrolyte layers. The heat radiation between cell and air-preheating tube is also incorporated into the model. This allows the model to predict heat transfer between the cell and air-preheating tube accurately. The model is validated and shows good agreement with literature data. It is anticipated that this model can be used to help develop efficient fuel cell designs and set operating variables under practical conditions. The transport phenomena inside the cell, including gas flow behaviour, temperature, overpotential, current density and species concentration, are analysed and discussed in detail. Fuel and air velocities are found to vary along flow passages depending on the local temperature and species concentrations. This model demonstrates the importance of incorporating heat radiation into a tubular SOFC model. Furthermore, the model shows that the overall cell performance is limited by O2 diffusion through the thick porous cathode and points to the development of new cathode materials and designs being important avenues to enhance cell performance.  相似文献   

10.
We investigated the effect of current loading on the degradation behavior of an anode-supported solid oxide fuel cell (SOFC). The cell consisted of LaNi0.6Fe0.4O3 (LNF), alumina-doped scandia stabilized zirconia (SASZ), and a Ni-SASZ cermet as the cathode, electrolyte, and anode, respectively. The test was carried out at 1073 K with constant loads of 0.3, 1.0, 1.5, and 2.3 A cm−2. The degradation rate, defined by the voltage loss during a fixed period (about 1000 h), was faster at higher current densities. From an impedance analysis, the degradation depended mainly on increases in the cathodic resistance, while the anodic and ohmic resistances contributed very little. The cathode microstructures were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM).  相似文献   

11.
Time-dependent measurements of cell impedance of a HT-PEFC based on ABPBI were performed at constant frequencies close to the high-frequency (h.f.) intercept of the corresponding Nyquist plots with the real axis. The h.f. impedances approximate the ohmic resistance of the cell and they decrease, when current (140 mA cm−2) is switched on. Steady-state values are attained after 10 min. Vice versa, when current is switched off (OCV), the h.f. impedances instantaneously increase but reach steady-state values only after about 1 h. These values rise with increasing gas flow rates. The results are discussed in terms of hydration/dehydration processes, changing the equilibrium between orthophosphoric and pyrophosphoric acid and thus the conductivity of the electrolyte as well as the mobility of molecules and charge carriers. Impedance spectra were recorded after each time-dependent measurement under OCV conditions. The fit of these impedance data based on an equivalent circuit revealed ohmic resistances corrected by h.f. inductances and low frequency impedances associated with the cathode oxygen exchange reaction. The charge transfer resistances deduced from the low frequency impedances strongly depend on both air and hydrogen flow rates.  相似文献   

12.
A well-connected and high-porosity current collector layer fabricated at a low temperature of 550 °C is designed for metal-supported solid oxide fuel cells (SOFCs). Reduced Mn1.5Co1.5O4 (MCO) powders are used as the binder through the reforming of MCO in the air atmosphere. A high conductivity phase La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) is added to keep the porous frame microstructure and decease the ohmic polarization of the current collector layer. Three current collector layers are prepared: MCO, MCO/LSCF, and LSCF. The working state of each current collector layer in planar SOFC stack is reproduced by special experimental design; the performance is tested in the range of 550–750 °C. The results show that the current collector layer for SOFC is achieved at low temperatures using the reduction-oxidation properties of MCO, and the performance is improved by adding high conductivity phase LSCF. The gas distribution at the cathode side is also simulated for designing a high performance SOFC.  相似文献   

13.
The electrochemical performance of LSM-Pd composite material as current collector of SOFC cathode is studied on (La0.8Sr0.2)0.9MnO3 (LSM90) cathode. The influence of Pd content on contact resistance is investigated. The investigation shows that the contact resistance of LSM-Pd is about 20 mΩ cm2 at 750 °C when the composite contains 8 wt% Pd, and it could be comparable to pure Pt. The ohmic resistance of a single cell using LSM-Pd composite is about 255 mΩ cm2 that contains 4 wt% Pd as current collector, this value is close to that of a cell using expensive Pt paste as current collector.  相似文献   

14.
The combination of advanced characterization techniques and FEM-simulations provided detailed information about losses related to the flowfield geometry of a metallic interconnector (MIC) in a planar SOFC repeat unit. The presented 2-D FEM model is able to predict the repeat unit performance decrease due to the in plane ohmic losses in the electrodes and the contact resistance between electrode and MIC.The performed calculation and measurement showed an increase of ohmic losses of up to 84% when the single cell was contacted with a MIC, The contact resistance adds less than 6% on the cathode side. The in-plane current flow from the contact ribs to the triple phase boundaries under the gas channels caused 94% of the additional ohmic losses.Analysis of impedance spectra by the distribution of relaxation times and a subsequent Complex Nonlinear Least Squares fit separated gas diffusion from the total polarization losses. Depending on flowfield design, the gas diffusion resistance on the cathode side increased up to +750%.For high-performance anode supported cells, the choice of cathode flowfield design added up to 41% power loss, whereas the anodic flowfield design was of minor importance (<1% power loss).  相似文献   

15.
Protonic Ceramic Fuel Cells (PCFCs) are promising power sources operating at an intermediate temperature. Although plenty of experimental studies focusing on novel material development are available, the design optimization of PCFC through numerical modelling is limited. In this study, a 3D PCFC model focusing on the cathode thickness and microstructure design is developed due to the high overpotential loss of the cathode. Unlike the 1D/2D models, the rib-size effects on the PCFC performance are fully considered when optimizing the cathode structure. Different from 1D/2D models suggesting thin cathode thickness, this study finds that the optimal cathode thickness is about 120–200 μm. In a thin cathode, weak O2 diffusion from the channel to the rib-covered cathode can lead to O2 depletion under the rib and very low local cell performance. By adjusting the cathode porosity from 0.3 to 0.5, nearly 9% performance improvement and 22.5% improvement in gas distribution uniformity can be achieved. When the cathode particle size changes from 0.1 μm to 0.2 μm, the O2 concentration under the rib increases nearly 50%. The optimal electronic phase volume fraction is suggested to be around 50–60% for achieving a balance between ohmic resistance and reaction sites. This model elucidates the relationship between cathode microstructure and PCFC performance comprehensively and can serve as a guiding tool for cell fabrication and future novel interconnect structure design.  相似文献   

16.
In this study, the polarization resistance of anode-supported solid oxide fuel cells (SOFC) with La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathodes was investigated by I-V sweep and electrochemical impedance spectroscopy under a series of operating voltages and cathode environments (i.e. stagnant air, flowing air, and flowing oxygen) at temperatures from 550 °C to 750 °C. In flowing oxygen, the polarization resistance of the fuel cell decreased considerably with the applied current density. A linear relationship was observed between the ohmic-free over-potential and the logarithm of the current density of the fuel cell at all the measuring temperatures. In stagnant or flowing air, an arc related to the molecular oxygen diffusion through the majority species (molecular nitrogen) present in the pores of the cathode was identified at high temperatures and high current densities. The magnitude of this arc increased linearly with the applied current density due to the decreased oxygen partial pressure at the interface of the cathode and the electrolyte. It is found that the performance of the fuel cell in air is mainly determined by the oxygen diffusion process. Elimination of this process by flowing pure oxygen to the cathode improved the cell performance significantly. At 750 °C, for a fuel cell with a laser-deposited Sm0.2Ce0.8O1.9 (SDC) interlayer, an extraordinarily high power density of 2.6 W cm−2 at 0.7 V was achieved in flowing oxygen, as a result of reduced ohmic and polarization resistance of the fuel cell, which were 0.06 Ω cm2 and 0.03 Ω cm2, respectively. The results indicate that microstructural optimization of the LSCF cathode or adoption of a new cell design which can mitigate the oxygen diffusion limitation in the cathode might enhance cell performance significantly.  相似文献   

17.
Fuel gas containing sulfur to feed solid oxide fuel cell is a challenge for extending the application of SOFC. Yttrium doped into LaxSr1−xCrO3 as potential anode tolerant to H2S was investigated by XRD, XPS and electrochemical impedance spectra (EIS). Good sinter characteristic for (La,Y)0.7Sr0.3CrO3−δ (LYSC) observed by SEM contributes to the low ohmic loss (high conductivity) in SOFC fueled by H2(3%)–H2S(1%). Maximum power density of 20 mW/cm2 and open circuit voltage of 0.95 V for SOFC with LYSC can be obtained at 700 °C. The results by EIS indicate charge transfer loss in polarization resistance dominates in the total resistance, especially lower than 650 °C. Compared to ohmic loss, polarization resistance in LYSC is still the main cause to hinder the improvement of SOFC performance. Thus, LYSC with doped non-variant valence Y maintains good sulfur tolerance determined by XPS without improved electro-catalytic activity as EIS suggest.  相似文献   

18.
The long-term operation of an anode-supported solid oxide fuel cell was examined to study the degradation factor. The cell was constructed using LaNi0.6Fe0.4O3 (LNF), alumina-doped scandia stabilized zirconia (SASZ), and NiO-SASZ as the cathode, electrolyte, and anode respectively. The cell had Pt current collectors and was operated for 6500 h. The test was carried out at 1073 K with a constant load of 0.4 A cm−2 and included thermal cycling. The cell voltage degradation rate was below 0.86%/1000 h when the cell was operated for up to 5200 h. Changes in the resistance of the cells during the experiments were analyzed by impedance spectroscopy. The cathode polarization resistance and ohmic resistance increased with time. The elements (Si and B) contained in the water condensed from the cathode exhaust gas were identified using inductively coupled plasma (ICP).  相似文献   

19.
A new concept of multi-hole metallic bipolar plate (MH-MBP) for the H2/O2 fuel cell was developed for improving its performance. The fuel cell performances of MH-MBP cases increased as the hole length decreased. The cell with the MH-MBP-4, that has the shortest hole length, exhibited the best cell performance; the current density increased by 13.96% at 0.6 V. The ohmic resistance of the MHS MBPs decreased with the hole length, and it shows the lowest value for the fuel cell with MH-MBP-4 because of the more intimate contact. The higher value of charge transport resistance for the conventional MBP cases than those for the MH-MBP cases is observed under the entire current density regions; however, that of the fuel cell with MH-MBPs did not change because of the use of O2 at cathode.  相似文献   

20.
The electrochemical characteristics of the solid oxide fuel cell (SOFC) cathodes prepared by infiltration of (La0.85Sr0.15)0.9MnO3−δ (LSM) nanoparticles into porous Y0.5Bi1.5O3 (YSB) backbones are investigated in terms of overpotential, interfacial polarization resistance, and single cell performance obtained with three-electrode cell, symmetrical cell, and single cell, respectively. X-ray diffraction confirms the formation of perovskite LSM by heating the infiltrated nitrates at 800 °C. The electrical conductivity of the electrode measured using Van der Pauw method is 1.67 S cm−1, which is acceptable at the typical SOFC operating temperatures. The single cell with the LSM infiltrated YSB cathode generates maximum power densities of 0.23, 0.45, 0.78, and 1.13 W cm−2 at 600, 650, 700, and 750 °C, respectively. The oxygen reduction mechanism on the cathode is studied by analyzing the impedance spectra obtained under various temperatures and oxygen partial pressures. The impedance spectra under various cathodic current densities are also measured to study the effect of cathodic polarization on the performance of the cathode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号