首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To place hydrogen energy usage into proper perspective, International Center for Hydrogen Energy Technologies (ICHET) has been implementing measures to demonstrate potential benefits of the “hydrogen and fuel cell systems” in developing countries. Demonstration of technologies is the most important aspect of ICHET vision for the formation of an industry in the developing world. ICHET has embarked on a series of educational and laboratory activities designed to increase the knowledge and awareness of students and advanced researchers concerning hydrogen energy technologies. The state of the art fuel cell laboratory is available for joint technology development and demonstration activities. Internship activities facilitate knowledge transfer, exchange of information at regional, national and international levels and involve academics, researchers, experts and service providers. Collaboration is a key part of the organizational strategy for joint projects, funding and trainings in the field of hydrogen and fuel cells.  相似文献   

2.
Fuel cell vehicles have a high potential to reduce both energy consumption and carbon dioxide emissions. However, due to the low density, hydrogen gas limits the amount of hydrogen stored on board. This restriction also prevents wide penetration of fuel cells. Hydrogen storage is the key technology towards the hydrogen society. Currently high-pressure tanks and liquid hydrogen tanks are used for road tests, but both technologies do not meet all the requirements of future fuel cell vehicles. This paper briefly explains the current status of conventional technologies (simple containment) such as high-pressure tank systems and cryogenic storage. Another method, hydrogen-absorbing alloy has been long investigated but it has several difficulties for the vehicle applications such as low temperature discharge characteristics and quick charge capability due to its reaction heat. We tested a new idea of combining metal hydride and high pressure. It will solve some difficulties and improve performance such as gravimetric density. This paper describes the latest material and system development.  相似文献   

3.
This study presents the technological S-curves that integrates the Bibliometric and patent analysis into the Logistic growth curve model for hydrogen energy and fuel cell technologies and identifies the optimal patent strategy for the fuel cell industry, including PEMFC, SOFC, and DMFC/DAFC. Empirical analysis is via an expert survey and Co-word analysis using the United States Patent and Trademark Office database to obtain useful data. Analytical results demonstrate that the S-curves is a highly effective means of quantifying how technology forecasting of cumulative publication patent number. Analytical results also indicate that technologies for generating and storing hydrogen have not yet reached technological maturity; thus, additional R&D funding is needed to accelerate the development of hydrogen technology. Conversely, fuel cell technologies have reached technological maturity, and related patent strategies include freedom to operate, licensing, and niche inventions. The proposed model can be applied to all high-technology cases, and particularly to new clean technologies. The study concludes by outlining the limitations of the proposed model and directions for further research.  相似文献   

4.
The development and application of a hydrogen dual sensor (HDS) for the application in the fuel cell (FC) field, is reported. The dual sensing device is based on a ceramic platform head with a semiconducting metal oxide layer (MOx) printed on Pt interdigitated contacts on one side and a Pt serpentine resistance on the back side. MOx layer acts as a conductometric (resistive) gas sensor, allowing to detect low H2 concentrations in air with high sensitivity and fast response, making it suitable as a leak hydrogen sensor. The proposed Co-doped SnO2 layer shows high sensitivity to hydrogen (R0/R = 90, for 2000 ppm of H2) at 250 °C in air, and with fast response (<3 s). Pt resistance serves as a thermal conductivity sensor, and can used to monitor the whole range of hydrogen concentration (0–100%) in the fuel cell feed line with short response-recovery times, lower than 13 s and 14 s, respectively. The effect of the main functional parameters on the sensor response have been evaluated by bench tests. The results demonstrate that the dual sensor, in spite of its simplicity and cheapness, is promising for application in safety and efficiency control systems for FC power source.  相似文献   

5.
A properly trained first responder community is critical to the successful introduction of hydrogen fuel cell applications and their transformation in how we use energy. Providing resources with accurate information and current knowledge is essential to the delivery of effective hydrogen and fuel cell-related first responder training. The California Fuel Cell Partnership and the Pacific Northwest National Laboratory have over 15 years of experience in developing and delivering hydrogen safety-related first responder training materials and programs. A National Hydrogen and Fuel Cell Emergency Response Training Resource was recently released (http://h2tools.org/fr/nt/). This training resource serves the delivery of a variety of training regimens. Associated materials are adaptable for different training formats, ranging from high-level overview presentations to more comprehensive classroom training. This paper presents what has been learned from the development and delivery of hydrogen safety-related first responder training programs (online, classroom, hands-on) by the respective organizations. The collaborative strategy being developed for enhancing training materials and methods for greater accessibility based on stakeholder input will be discussed.  相似文献   

6.
In this paper, reaction engineering principles are utilized to analyze process conditions for producing sufficient hydrogen in an ammonia decomposition reactor for generating net power of 100 W in a fuel cell. It is shown that operating the reactor adiabatically results in a sharp decrease in temperature due to endothermic reaction, which results in low conversion of ammonia. For this reason, the reactor is heated electrically to provide heat for the endothermic reactions. It is observed that when the reactor is operated non-adiabatically, it is possible to get over 99.5% conversion of ammonia. The weight of absorbent to reduce ammonia to ppb levels is calculated. An energy balance on the reactor exit gas indicates that there is sufficient heat available to vaporize enough water to achieve 100% relative humidity in the fuel cell. A suitable fuel cell stack is designed and it is shown that this stack is able to provide the necessary power to electrically heat the reactor and produce net power of 100 W.  相似文献   

7.
A hydrogen fuel cell vehicle requires fuel cells, batteries, supercapacitors, controllers and smart control units with their control strategies. The controller ensures that a control strategy predicated on the data taken from the traction motor and energy storage systems is created. The smart control unit compares the fuel cell nominal output power with the vehicle power demand, calculates the parameters and continually adjusts the variables. The control strategies that can be developed for these units will enable us to overcome the technological challenges for hydrogen fuel cell vehicles in the near future. This study presents the best hydrogen fuel cell vehicle configurations and control strategies for safe, low cost and high efficiency by comparing control strategies in the literature for fuel economy.  相似文献   

8.
In the last decade, production of biogas from biomass degradation has attracted the attention of several research groups. The interest on this hydrogen source is focused on the potential use of this gas as raw material to supply high temperature fuel cells (HTFC). This paper reports a wide research investigation carried out at CNR-ITAE on biogas reforming processes (steam reforming, autothermal reforming and partial oxidation). A mathematical model was developed, in Aspen Plus, and an experimental validation was made in order to confirm model results. Simulations were performed to determine the reformed gas composition and the system energy balance as a function of process temperature and pressure. The value of Gas Hour Space Velocity (GHSV) was selected for calculating compositions at full equilibrium, as it is expected in operative large scale plant. To obtain a realistic evaluation of the reforming processes efficiency, the energy balance for each examined process was developed as available energy of outlet syngas on inlet required energy ratio. The comparison between values of efficiency process gives useful indication about their reliability to be integrate with fuel cell systems.  相似文献   

9.
Fuel economy of hydrogen fuel cell vehicles   总被引:1,自引:0,他引:1  
On the basis of on-road energy consumption, fuel economy (FE) of hydrogen fuel cell light-duty vehicles is projected to be 2.5–2.7 times the fuel economy of the conventional gasoline internal combustion engine vehicles (ICEV) on the same platforms. Even with a less efficient but higher power density 0.6 V per cell than the base case 0.7 V per cell at the rated power point, the hydrogen fuel cell vehicles are projected to offer essentially the same fuel economy multiplier. The key to obtaining high fuel economy as measured on standardized urban and highway drive schedules lies in maintaining high efficiency of the fuel cell (FC) system at low loads. To achieve this, besides a high performance fuel cell stack, low parasitic losses in the air management system (i.e., turndown and part load efficiencies of the compressor–expander module) are critical.  相似文献   

10.
The hydrogen feeding sub-system is one of balance of plant (BOP) components necessary for the correct operation of a fuel cell system (FCS). In this paper the performance of a 6 kW PEM (Proton Exchange Membrane) FCS, able to work with two fuel feeding procedures (dead-end or flow-through), was experimentally evaluated with the aim to highlight the effect of the anode operation mode on stack efficiency and durability. The FCS operated at low reactant pressure (<50 kPa) and temperature (<330 K), without external humidification. The experiments were performed in both steady state and dynamic conditions. The performance of some cells in dead-end mode worsened during transient phases, while a more stable working was observed with fuel recirculation. This behavior evidenced the positive role of the flow-through procedure in controlling flooding phenomena, with the additional advantage to simplify the management issues related to hydrogen purge and air stoichiometric ratio. The flow-through modality resulted a useful way to optimize the stack efficiency and to reduce the risks of fast degradation due to reactant starvation during transient operative phases.  相似文献   

11.
Two vehicle fire tests were conducted to investigate the spread of fire to adjacent vehicles from a hydrogen fuel cell vehicle (HFCV) equipped with a thermal pressure relief device (TPRD) : – 1) an HFCV fire test involving an adjacent gasoline vehicle, 2) a fire test involving three adjoining HFCV assuming their transportation in a carrier ship. The test results indicated that the adjacent vehicles were ignited by flames from the interior and exterior materials of the fire origin HFCV, but not by the hydrogen flames generated through the activation of TPRD.  相似文献   

12.
Liquid ammonia is an attractive hydrogen carrier because of high storage capacity. According to ISO14687-2, an acceptable ammonia concentration in hydrogen for polymer electrolyte membrane (PEM) fuel cell vehicles is 0.1 ppm. When ammonia is used as the hydrogen carrier, about 1000 ppm of ammonia included in gas generated by ammonia decomposition at 773–823 K and 0.1 MPa has to be reduced to less than 0.1 ppm. Although several types of ammonia absorption materials are investigated as ammonia remover, the target value cannot be achieved by static adsorption methods. However, we have succeeded in that the ammonia concentration is reduced down to 0.01–0.02 ppm by using Li-exchange X-type zeolite (Li-X) as the absorbent and dynamic adsorption methods. Furthermore, Li-X is simply recycled by heating at 673 K. Therefore, Li-X is a durable and recyclable ammonia removal material for the highly purified hydrogen production from ammonia for PEM fuel cells.  相似文献   

13.
Efficiencies of hydrogen storage systems onboard fuel cell vehicles   总被引:2,自引:1,他引:2  
Energy efficiency, vehicle weight, driving range, and fuel economy are compared among fuel cell vehicles (FCV) with different types of fuel storage and battery-powered electric vehicles. Three options for onboard fuel storage are examined and compared in order to evaluate the most energy efficient option of storing fuel in fuel cell vehicles: compressed hydrogen gas storage, metal hydride storage, and onboard reformer of methanol. Solar energy is considered the primary source for fair comparison of efficiencies for true zero emission vehicles. Component efficiencies are from the literature. The battery powered electric vehicle has the highest efficiency of conversion from solar energy for a driving range of 300 miles. Among the fuel cell vehicles, the most efficient is the vehicle with onboard compressed hydrogen storage. The compressed gas FCV is also the leader in four other categories: vehicle weight for a given range, driving range for a given weight, efficiency starting with fossil fuels, and miles per gallon equivalent (about equal to a hybrid electric) on urban and highway driving cycles.  相似文献   

14.
Traditionally, H2 is a large-scale production by the reforming process of light hydrocarbons, mainly natural gas, used by the chemical industry. However, the reforming technologies currently used encounter numerous technical/scientific challenges, which depend on the quality of raw materials, the conversion efficiency and security needs for the integration of H2 production, purification and use, among others. Biogas is a high-potential versatile raw material for reforming processes, which can be used as an alternative CH4 source. The production of H2 from renewable sources, such as biogas, helps to largely reduce greenhouse gas emissions. Within this context, the integration of biogas reforming processes and the activation of fuel cell using H2 represent an important route for generating clean energy, with added high-energy efficiency. This work expounds a literature review of the biogas reforming technologies, emphasizing the types of fuel cells available, the advantages offered by each route and the main problems faced.  相似文献   

15.
Hydrogen and fuel cell vehicles are often discussed as crucial elements in the decarbonisation of the transport systems. However, in spite of the fact that hydrogen and fuel cell vehicles have a long history, they are still seen only as a long-term mobility option. The major objective of this paper is to analyse key barriers to the increasing use of hydrogen and fuel cell vehicles. A special focus is put on their economic performance, because this will be most crucial for their future deployment. Mobility costs are calculated based on the total cost of ownership, and future developments are analysed based on technological learning. The major conclusion is that to achieve full benefits of hydrogen and fuel cells in the transport sector, it is necessary to provide stabile, long-term policy framework conditions, as well as to harmonize actions across regions to be able to take advantage of economies of scale.  相似文献   

16.
The United Nations Economic Commission for Europe Global Technical Regulation (GTR) Number 13 (Global Technical Regulation on Hydrogen and Fuel Cell Vehicles) is the defining document regulating safety requirements in hydrogen vehicles, and in particular, fuel cell electric vehicles (FCEVs). GTR Number 13 has been formally adopted and will serve as the basis for the national regulatory standards for FCEV safety in North America (led by the United States), Japan, Korea, and the European Union. The GTR defines safety requirements for these vehicles, including specifications on the allowable hydrogen levels in vehicle enclosures during in-use and post-crash conditions and on the allowable hydrogen emissions levels in vehicle exhaust during certain modes of normal operation. However, in order to be incorporated into national regulations, that is, to be legally binding, methods to verify compliance with the specific requirements must exist. In a collaborative program, the Sensor Laboratories at the National Renewable Energy Laboratory in the United States and the Joint Research Centre, Institute for Energy and Transport in the Netherlands have been evaluating and developing analytical methods that can be used to verify compliance with the hydrogen release requirements as specified in the GTR.  相似文献   

17.
In recent years, significant research and development efforts were spent on hydrogen storage technologies with the goal of realizing a breakthrough for fuel cell vehicle applications. This article scrutinizes design targets and material screening criteria for solid state hydrogen storage. Adopting an automotive engineering point of view, four important, but often neglected, issues are discussed: 1) volumetric storage capacity, 2) heat transfer for desorption, 3) recharging at low temperatures and 4) cold start of the vehicle. The article shall help to understand the requirements and support the research community when screening new materials.  相似文献   

18.
Sulfur removal is significant for fuels used as hydrogen source for modern fuel cell applications and to avoid sulfur poisoning of therein used catalysts. Novel membranes for the polymer–zeolite system with well-defined transport channels are proposed for the sulfur removal. Membranes are fabricated using polyimide (PI) as matrix material and Y zeolites as adsorptive functional materials. By detailed analysis of FT-IR, morphology and adsorption performance of membranes, the process-structure-function relationship is obtained. The results show that the functional zeolites particles are incorporated into three-dimensional channels. For all cases, the inlet fuel can be desulfurized to below 0.1 mg L−1, which means that the outlet fuel can be used as sulfur-free hydrogen source for fuel cell applications. The proposed membranes adsorber may be applied as sulfur trap before the reformer for fuel cells on-board or on-site, and it may be applied in a periodically replaceable form. The desulfurization efforts by membrane are likely to play an influential role for the development of sulfur-free hydrogen source and fuel cell area.  相似文献   

19.
Over the last several decades, hydrogen fuel cell vehicles (FCVs) have emerged as a zero tailpipe-emission alternative to the battery electric vehicle (EV). To address questions about consumer reaction to FCVs, this report presents the results of a “ride-and-drive” clinic series (N = 182) held in 2007 with a Mercedes-Benz A-Class “F-Cell” hydrogen FCV. The clinic evaluated participant reactions to driving and riding in an FCV, as well as vehicle refueling. Pre-and post-clinic surveys assessed consumer response. More than 80% left with a positive overall impression of hydrogen. The majority expressed a willingness to travel 5–10 min to find a hydrogen station. More than 90% of participants would consider an FCV driving range of 300 miles (480 km) to be acceptable. Stated willingness-to-pay preferences were explored. The results show that short-term exposure can improve consumer perceptions of hydrogen performance and safety among people who are the more likely early adopters.  相似文献   

20.
The well-to-wheels (WTW) analysis of energy conservation and greenhouse gas emission of advanced scooters associated with new transportation fuels is studied in the present work. Focus is placed on fuel cell scooter technologies, while the gasoline-powered scooter equipped with an internal combustion engine (ICE) serves as a reference technology. The effect of various pathways of hydrogen production on the well-to-tank (WTT) efficiency for energy is examined. Both near-term and long-term hydrogen production options are explored, such as purification of coke oven gas (COG), steam reforming of natural gas, water electrolysis by generation mix and renewable electricity, and gasification of herbaceous biomass. Then, the WTW efficiency of fuel cell scooters for various hydrogen production options is compared with that of the conventional ICE scooters and electric scooters. Results showed that the fuel cell scooters fueled with COG-based hydrogen could achieve the highest reduction benefits in energy consumption and GHG emission. Finally, the potential for hydrogen production from COG resulting from the coking process in steelworks is evaluated, which is anticipated as a near-term hydrogen production for helping transition to a hydrogen energy economy in Taiwan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号