首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MgH2 is a perspective hydrogen storage material whose main advantage is a relatively high hydrogen storage capacity (theoretically, 7.6 wt.% H2). This compound, however, shows poor hydrogen desorption kinetics. Much effort was devoted in the past to finding possible ways of enhancing hydrogen desorption rate from MgH2, which would bring this material closer to technical applications. One possible way is catalysis of hydrogen desorption. This paper investigates separate catalytic effects of Ni, Mg2Ni and Mg2NiH4 on the hydrogen desorption characteristics of MgH2. It was observed that the catalytic efficiency of Mg2NiH4 was considerably higher than that of pure Ni and non-hydrated intermetallic Mg2Ni. The Mg2NiH4 phase has two low-temperature modifications below 508 K: un-twinned phase LT1 and micro-twinned phase LT2. LT1 was observed to have significantly higher catalytic efficiency than LT2.  相似文献   

2.
Magnesium-based hydrogen storage materials (MgH2) are promising hydrogen carrier due to the high gravimetric hydrogen density; however, the undesirable thermodynamic stability and slow kinetics restrict its utilization. In this work, we assist the de/hydrogenation of MgH2 via in situ formed additives from the conversion of an MgNi2 alloy upon de/hydrogenation. The MgH2–16.7 wt%MgNi2 composite was synthesized by ball milling of Mg powder and MgNi2 alloy followed by a hydrogen combustion synthesis method, where most of the Mg converted to MgH2, and the others reacted with the MgNi2 generating Mg2NiH4, which produced in situ Mg2Ni during dehydrogenation. Results showed that the Mg2Ni and Mg2NiH4 could induce hydrogen absorption and desorption of the MgH2, that it absorbed 2.5 wt% H2 at 473 K, much higher than that of pure Mg, and the dehydrogenation capacity increased by 2.6 wt% at 573 K. Besides, the initial dehydrogenation temperature of the composite under the promotion of Mg2NiH4 decreased greatly by 100 K, whereas it is 623 K for MgH2. Furthermore, benefiting from the catalyst effect of Mg2NiH4 during dehydrogenation, the apparent activation energy of the composite reduced to 73.2 kJ mol−1 H2 from 129.5 kJ mol−1 H2.  相似文献   

3.
The effect of Ni-substitution on the structure and hydrogen storage properties of Mg2Cu1−xNix (x = 0, 0.2, 0.4, 0.6, 0.8, 1) alloys prepared by a method combining electric resistance melting with isothermal evaporation casting process (IECP) has been studied. The X-ray single-crystal diffraction analysis results showed that the cell volume decreases with increasing Ni concentration, and crystal structure transforms Mg2Cu with face-centered orthorhombic into Ni-containing alloys with hexagonal structure. The Ni-substitution effects on the hydriding reaction indicated that absorption kinetics and hydrogen storage capacity increase in proportion to the concentration of the substitutional Ni. The activated Mg2Cu and Mg2Ni alloys absorbed 2.54 and 3.58 wt% H, respectively, at 573 K under 50 bar H2. After a combined high temperature and pressure activation cycle, the charged samples were composed of MgH2, MgCu2 and Mg2NiH4 while the discharged samples contained ternary alloys of Mg–Cu–Ni system with the helpful effect of rising the desorption plateau pressures compared with binary Mg–Cu and Mg–Ni alloys. With increasing nickel content, the effect of Ni is actually effective in MgH2 and Mg2NiH4 destabilization, leading to a decrease of the desorption temperature of these two phases.  相似文献   

4.
The Mg-based hydrogen storage alloy with multiple platforms is successfully prepared by ball milling Co powder and Mg-RE-Ni precursor alloy, and its hydrogen storage behavior was investigated in detail by XRD, EDS, TEM, PCI, and DSC methods. The ball-milled alloy consists of the main phase Mg, the catalytic phases Mg2Ni, Mg2Co as well as a small amount of Mg12Ce, and convert into the MgH2–CeH2.73-Mg2NiH4–Mg2CoH5 composite after hydrogenation. The composite has three PCI platforms corresponding to the reversible de/hydrogenation reaction of Mg/MgH2, Mg2Ni/Mg2NiH4 and Mg6Co2H11/Mg2CoH5. Among them, the transformation between Mg2Ni and Mg2NiH4 triggers the “spill-over” effect which promote the decomposition of MgH2 phases and enhances the hydrogen desorption kinetics. Meanwhile, the conversion of the Mg6Co2H11 to Mg2CoH5 phase induces the “chain reaction” effect, which leads to preferential nucleation of Mg phase and improves the hydrogen absorption kinetics. Therefore, the Mg-RE-Ni-Co alloy has a double improvement on hydrogen absorption and desorption kinetics. Concretely, the alloy has an optimal hydrogen absorption temperature of 200 °C, at which it can absorb 5.5 wt. % H2 within 40 s. Under the conditions, the capacity of absorption almost reaches the maximum reversible value (about 5.6 wt. %). Besides, the alloy has a dehydrogenation activation energy of 67.9 kJ/mol and can desorb 5.0 wt. % H2 within 60 min at the temperature of 260 °C.  相似文献   

5.
A rapidly-solidified Mg-Ni-Pd alloy is shown to exhibit reversible hydrogen-storage of 5 mass % H at a temperature of 473 K, nearly 100 K below temperatures typically required for Mg-based alloys, with an equilibrium absorption plateau near 1 atm H2 pressure. Additionally, a single plateau is observed in the pressure-composition isotherm where MgH2 and Mg2NiH4 form and decompose simultaneously during the absorption/desorption process. The increase in absorption plateau pressure to 100 kPa suggests a decrease in the free energy by as much as 15 kJ/mol resulting from either a decrease in enthalpy or an increase in entropy of reaction between the hydride and metallic phases. The improved thermodynamics are discussed in terms of the formation of a new equilibrium metallic phase, Mg6(Ni,Pd). The phase alters the thermodynamics of the hydriding reaction, allowing both MgH2 and Mg2NiH4 to form cooperatively in a single reaction. This method for reducing the free energy of the hydriding reaction is promising, and may prove useful in a variety of other metal-hydride hydrogen-storage systems.  相似文献   

6.
Additive doping is one of the effective methods to overcome the shortcomings of MgH2 on the aspect of relatively high operating temperatures and slow desorption kinetics. In this paper, hollow g-C3N4 (TCN) tubes with a diameter of 2 μm are synthesized through the hydrothermal and high-temperature pyrolysis methods, and then nickel is chemically reduced onto TCN to form Ni/TCN composite at 278 K. Ni/TCN is then introduced into the MgH2/Mg system by means of hydriding combustion and ball milling. The MgH2–Ni/TCN composite starts to release hydrogen at 535 K, which is 116 K lower than the as-milled MgH2 (651 K). The MgH2–Ni/TCN composite absorbs 5.24 wt% H2 within 3500 s at 423 K, and takes up 3.56 wt% H2 within 3500 s, even at a temperature as low as 373 K. The apparent activation energy (Ea) of the MgH2 decreases from 161.1 to 82.6 kJ/mol by the addition of Ni/TCN. Moreover, the MgH2–Ni/TCN sample shows excellent cycle stability, with a dehydrogenation capacity retention rate of 98.0% after 10 cycles. The carbon material enhances sorption kinetics by dispersing and stabilizating MgH2. Otherwise, the phase transformation between Mg2NiH4 and Mg2NiH0.3 accelerates the re/dehydrogenation reaction of the composite.  相似文献   

7.
We have performed ab initio calculations with equilibrium supercells of the Mg2Ni compound and its hydride Mg2NiH4 doped with elements X = Al, Ga, In, Si, Ge and Sn. Two concentrations of X in both structures have been set: (1) every 16th, and (2) every fourth Ni atom has been substituted by X. Total energy calculations yielded the Mg2NiH4 hydrogen absorption enthalpy ΔHabs according to the chemical reaction Mg2Ni + 2H2 → Mg2NiH4. Reduction of the hydrogen absorption enthalpy was reported for both concentrations of X. When doping the Mg2NiH4 hydride with X = In in a low concentration (1), the value of hydrogen desorption enthalpy decreases from 68.22 to 55.96 kJ(mol H2)?1. Doping with X = In in a high concentration (2) further decreases the hydrogen desorption enthalpy to 5.50 kJ(mol H2)?1. Further, the electronic structure of Mg2(Ni–In)H4 hydride with a low In concentration indicates weaker Ni–H bonds in comparison with the pristine Mg2NiH4. Attraction between H and In atoms induced enhanced bonding between Mg and H atoms compared to the pristine Mg2NiH4.  相似文献   

8.
A metal-organic framework based on Ni (II) as metal ion and trimasic acid (TMA) as organic linker was synthesized and introduced into MgH2 to prepare a Mg-(TMA-Ni MOF)-H composite through ball-milling. The microstructures, phase changes and hydrogen storage behaviors of the composite were systematically studied. It can be found that Ni ion in TMA-Ni MOF is attracted by Mg to form nano-sized Mg2Ni/Mg2NiH4 after de/rehydrogenation. The hydriding and dehydriding enthalpies of the Mg-MOF-H composite are evaluated to be −74.3 and 78.7 kJ mol−1 H2, respectively, which means that the thermodynamics of Mg remains unchanged. The absorption kinetics of the Mg-MOF-H composite is improved by showing an activation energy of 51.2 kJ mol−1 H2. The onset desorption temperature of the composite is 167.8 K lower than that of the pure MgH2 at the heating rate of 10 K/min. Such a significant enhancement on the sorption kinetic properties of the composite is attributed to the catalytic effects of the nanoscale Mg2Ni/Mg2NiH4 derived from TMA-Ni MOF by providing gateways for hydrogen diffusion during re/dehydrogenation processes.  相似文献   

9.
Mg2NiH4, with fast sorption kinetics, is considered to be a promising hydrogen storage material. However, its hydrogen desorption enthalpy is too high for practical applications. In this paper, first-principles calculations based on density functional theory (DFT) were performed to systematically study the effects of Al doping on dehydrogenation properties of Mg2NiH4, and the underlying dehydrogenation mechanism was investigated. The energetic calculations reveal that partial component substitution of Mg by Al results in a stabilization of the alloy Mg2Ni and a destabilization of the hydride Mg2NiH4, which significantly alters the hydrogen desorption enthalpy ΔHdes for the reaction Mg2NiH4 → Mg2Ni + 2H2. A desirable enthalpy value of ∼0.4 eV/H2 for application can be obtained for a doping level of x ≥ 0.35 in Mg2−xAlxNi alloy. The stability calculations by considering possible decompositions indicate that the Al-doped Mg2Ni and Mg2NiH4 exhibit thermodynamically unstable with respect to phase segregation, which explains well the experimental results that these doped materials are multiphase systems. The dehydrogenation reaction of Al-doped Mg2NiH4 is energetically favorable to perform from a metastable hydrogenated state to a multiphase dehydrogenated state composed of Mg2Ni and Mg3AlNi2 as well as NiAl intermetallics. Further analysis of density of states (DOS) suggests the improving of dehydrogenation properties of Al-doped Mg2NiH4 can be attributed to the weakened Mg-Ni and Ni-H interactions and the decreasing bonding electrons number below Fermi level. The mechanistic understanding gained from this study can be applied to the selection and optimization of dopants for designing better hydrogen storage materials.  相似文献   

10.
Evolution of microstructure and hydrogen storage performances were studied in a Y substituted Mg24Ni10Cu2 hydrogen storage alloy. Interactions of Y and Cu on the phase structure and hydrogen storage properties were explore. Substitution by Y refined the microstructure and yield existence of YMgNi4. Furthermore, Y addition promoted the replacement of Cu for Ni in the Mg2Ni.The study of the alloy's dehydrogenation performance and mechanism showed that the addition of Y did not alter the mechanism of random nucleation and subsequent growth, but reduced the activation energy of the dehydrogenation of the alloy from 77.4 kJ/mol to 67.6 kJ/mol. The thermodynamic energy of the dehydrogenation was also improved, and the enthalpy change (ΔH) and entropy change (ΔS) of the Mg2NiH4 phase decreased from 67.1 J/K/mol H2 and 123.1 J/K/mol H2 to 61.1 J/K/mol H2 and 115.4 J/K/mol H2, respectively. Furthermore, the density functional theory calculation showed that the addition of Y promoted the substitution of Cu for Ni, further reduced the stability of the main hydride Mg2NiH4, facilitated the release of hydrogen, and reduced the ΔH and ΔS of the hydride dehydrogenation.  相似文献   

11.
In this work, ageing of Mg/Mg2Ni mixtures was investigated. It was observed that hydrogen desorption kinetics from hydrided Mg/Mg2Ni was improved considerably after ageing at room temperature for several days. The ageing was interpreted in terms of phase changes. Even after almost complete hydridation, besides two main phases – MgH2 and Mg2NiH4 – a certain amount of Mg2NiH0.3 was always present. Similar as Mg2NiH4 phase, Mg2NiH0.3 islands were located on the surface of MgH2 grains. Mg2NiH0.3 transformed into Mg2NiH4 at the expense of hydrogen from an adjoining MgH2 grain. In such a way, a clean double layer (Mg)–Mg2NiH4 was formed, acting as a gate for easy hydrogen desorption from MgH2. It was found that the Mg2NiH4 phase was slightly enriched on non-twinned modification LT1 during the ageing. As a result, both the creation of (Mg)–Mg2NiH4 desorption bridges and enrichment of Mg2NiH4 on LT1 during the ageing facilitated onset of rapid hydrogen desorption.  相似文献   

12.
Nowadays, catalytic doping has been regarded as one of the most promising and effective methods to improve the sluggish kinetics of magnesium hydride (MgH2). Herein, we synthesized Ni/TiO2 nanocomposite with the particle sizes about 20 nm by an extremely facile solvothermal method. Then, the Ni/TiO2 nanocomposite was doped into MgH2 to enhance its reversible hydrogen storage properties. A remarkably enhancement of de/rehydrogenation kinetics of MgH2 can be achieved by doped with Ni/TiO2 nanocomposite, compared to that solely doped with Ni or TiO2 nanoparticles. The hydrogen desorption peak temperature of MgH2Ni/TiO2 is 232 °C, which is 135.4 °C lower than that of ball-milled MgH2 (367.4 °C). Moreover, the MgH2Ni/TiO2 can desorb 6.5 wt% H2 within 7 min at 265 °C and absorb ∼5 wt% H2 within 10 min at 100 °C. In particular, the apparent activation energy of MgH2Ni/TiO2 is obviously decreased from 160.5 kJ/mol (ball-milled MgH2) to 43.7 ± 1.5 kJ/mol. Based on the analyses of microstructure evolution, it is proved that metallic Ni particles can react with Mg easily to form fine Mg2Ni particles after dehydrogenation, and the in-situ formed Mg2Ni will transform into Mg2NiH4 in the subsequent rehydrogenation process. The significantly improved hydrogen absorption/desorption properties of MgH2Ni/TiO2 can be ascribed to the synergistic catalytic effect of reversible transformation of Mg2Ni/Mg2NiH4 which act as “hydrogen pump”, and the multiple valence titanium compounds (Ti4+/3+/2+) which promote the electrons transfer of MgH2/Mg.  相似文献   

13.
In this study, a low-cost biomass charcoal (BC)-based nickel catalyst (Ni/BC) was introduced into the MgH2 system by ball-milling. The study demonstrated that the Ni/BC catalyst significantly improved the hydrogen desorption and absorption kinetics of MgH2. The MgH2 + 10 wt% Ni/BC-3 composite starts to release hydrogen at 187.8 °C, which is 162.2 °C lower than the initial dehydrogenation temperature of pure MgH2. Besides, 6.04 wt% dehydrogenation can be achieved within 3.5 min at 300 °C. After the dehydrogenation is completed, MgH2 + 10 wt% Ni/BC-3 can start to absorb hydrogen even at 30 °C, which achieved the absorption of 5 wt% H2 in 60 min under the condition of 3 MPa hydrogen pressure and 125 °C. The apparent activation energies of dehydrogenation and hydrogen absorption of MgH2 + 10 wt% Ni/BC-3 composites were 82.49 kJ/mol and 23.87 kJ/mol lower than those of pure MgH2, respectively, which indicated that the carbon layer wrapped around MgH2 effectively improved the cycle stability of hydrogen storage materials. Moreover, MgH2 + 10 wt% Ni/BC-3 can still maintain 99% hydrogen storage capacity after 20 cycles. XRD, EDS, SEM and TEM revealed that the Ni/BC catalyst evenly distributed around MgH2 formed Mg2Ni/Mg2NiH4 in situ, which act as a “hydrogen pump” to boost the diffusion of hydrogen along with the Mg/MgH2 interface. Meanwhile, the carbon layer with fantastic conductivity enormously accelerated the electron transfer. Consequently, there is no denying that the synergistic effect extremely facilitated the hydrogen absorption and desorption kinetic performance of MgH2.  相似文献   

14.
Herein, a new type of trimesic acid-Ni based metal organic framework (TMA-Ni MOF) was synthesized and then, its derivative Ni@C was introduced into MgH2 as destabilizer through high energy ball milling to prepare a Mg–Ni@C–H composite. X-ray diffraction analyses indicate the formation of Mg2Ni/Mg2NiH4 as major phases after dehydrogenation/rehydrogenation of the composite, respectively. Two hydrogen absorption plateaus are observed in the Mg–Ni@C–H composite, corresponding to the hydrogenation of Mg and Mg2Ni, with the enthalpy change values of −75.8 and −52.3 kJ mol−1 H2 respectively. Thus, it can be concluded that a destabilization effect is brought by Ni@C on thermodynamic properties of MgH2. In addition, the hydriding/dehydriding kinetics of MgH2 is notably accelerated with the addition of Ni-based MOF derivative. The activation energy values of both hydrogen absorption and desorption are significantly lowered down with the assistance of Ni@C. Moreover, stable hydrogen de/absorption capacity and kinetics are remained during 25 cycles of high-rate re/dehydrogenation, which can be ascribed to the carbon-wrapped structure of the composite, with which the aggregation of the nanosized particles can be evidently avioded.  相似文献   

15.
Herein, a novel flower-like Ni MOF with good thermostability is introduced into MgH2 for the first time, and which demonstrates excellent catalytic activity on improving hydrogen storage performance of MgH2. The peak dehydrogenation temperature of MgH2-5 wt.% Ni MOF is 78 °C lower than that of pure MgH2. Besides, MgH2-5 wt.% Ni MOF shows faster de/hydrogenation kinetics, releasing 6.4 wt% hydrogen at 300 °C within 600 s and restoring about 5.7 wt% hydrogen at 150 °C after dehydrogenation. The apparent activation energy for de/hydrogenation reactions are calculated to be 107.8 and 42.8 kJ/mol H2 respectively, which are much lower than that of MgH2 doped with other MOFs. In addition, the catalytic mechanism of flower-like Ni MOF is investigated in depth, through XRD, XPS and TEM methods. The high catalytic activity of flower-like Ni MOF can be attributed to the combining effect of in-situ generated Mg2Ni/Mg2NiH4, MgO nanoparticles, amorphous C and remaining layered Ni MOF. This research extends the knowledge of elaborating efficient catalysts via MOFs in hydrogen storage materials.  相似文献   

16.
As a high-density solid-state hydrogen storage material, magnesium hydride (MgH2) is promising for hydrogen transportation and storage. Yet, its stable thermodynamics and sluggish kinetics are unfavorable for that required for commercial application. Herein, nickel/vanadium trioxide (Ni/V2O3) nanoparticles with heterostructures were successfully prepared via hydrogenating the NiV-based two-dimensional layered double hydroxide (NiV-LDH). MgH2 + 7 wt% Ni/V2O3 presented more superior hydrogen absorption and desorption performances than pure MgH2 and MgH2 + 7 wt% NiV-LDH. The initial discharging temperature of MgH2 was significantly reduced to 190 °C after adding 7 wt% Ni/V2O3, which was 22 and 128 °C lower than that of 7 wt% NiV-LDH modified MgH2 and additive-free MgH2, respectively. The completely dehydrogenated MgH2 + 7 wt% Ni/V2O3 charged 5.25 wt% H2 in 20 min at 125 °C, while the hydrogen absorption capacity of pure MgH2 only amounted to 4.82 wt% H2 at a higher temperature of 200 °C for a longer time of 60 min. Moreover, compared with MgH2 + 7 wt% NiV-LDH, MgH2 + 7 wt% Ni/V2O3 shows better cycling performance. The microstructure analysis indicated the heterostructural Ni/V2O3 nanoparticles were uniformly distributed. Mg2Ni/Mg2NiH4 and metallic V were formed in-situ during cycling, which synergistically tuned the hydrogen storage process in MgH2. Our work presents a facile interfacial engineering method to enhance the catalytic activity by constructing a heterostructure, which may provide the mentality of designing efficient catalysts for hydrogen storage.  相似文献   

17.
Mg3MNi2 (M = Al, Ti, Mn) ternary intermetallic compounds with cubic structure are a new type of potential hydrogen storage alloys. Using ab initio density functional theory (DFT) calculations, the energetics and electronic structures of Mg3MNi2 (M = Al, Ti, Mn) compounds are systematically investigated. The optimized structural parameters including lattice constants and internal atomic positions are close to experimental data determined from X-ray powder diffraction. The calculated results of formation enthalpy ΔHform show that the stabilities of cubic Mg3MNi2 (M = Al, Ti, Mn) compound, compared with hexagonal Mg2Ni, increase in the order of Mg3MnNi2, Mg2Ni, Mg3TiNi2 and Mg3AlNi2, whereas the stabilities of their saturated Mg3MNi2H3 (M = Al, Ti, Mn) hydrides, compared with monoclinic Mg2NiH4, decrease in the order of Mg2NiH4, Mg3AlNi2H3, Mg3TiNi2H3 and Mg3MnNi2H3. Further calculations of hydrogen desorption enthalpy ΔHdes indicate that these cubic Mg3MNi2 (M = Al, Ti, Mn) compounds possess promising dehydrogenation properties for their relatively lower ΔHdes values. Among of them, the dehydrogenation ability of Mg3TiNi2 is the most pronounced. Analysis of electronic structures suggests that the strong covalent bonding interactions between Ni and M within cubic Mg3MNi2 (M = Al, Ti, Mn) are dominant and directly control the structural stabilities of these compounds.  相似文献   

18.
The structures and properties of hydrogen storage alloy Mg2Ni, of aluminum and silver substituted alloys Mg2−xMxNi (M = Al and Ag, x = 0.16667), and of their hydrides Mg2NiH4, Mg2−xMxNiH4 (M = Al and Ag, x = 0.125) have been calculated from first-principles. Results show that the primitive cell sizes of the intermetallic alloys and hydrides were reduced by substitution of Mg with Al or Ag. Also, the interaction of Ni–Ni was weakened by the substitution. A strong covalent interaction between H and Ni atoms forms tetrahedral NiH4 units in Mg2NiH4. The NiH4 unit near the Al/Ag atom became tripod-like NiH3 in Mg2−xMxNiH4 (M = Al, Ag), indicating that the hydrogen storage capacity was decreased by the substitution. The calculated enthalpies of hydrogenation for Mg2Ni, Mg2−xAlxNi and Mg2−xAgxNi are −65.14, −51.56 and −53.63 kJ/mol H2, respectively, implying that the substitution destabilizes the hydrides. Therefore, the substitution is an effective technique for improving the thermodynamic behavior of hydrogenation/dehydrogenation in magnesium-based hydrogen storage materials.  相似文献   

19.
In the present work we investigate the hydrogen sorption properties of composites in the MgH2–Ni, MgH2–Ni–LiH and MgH2–Ni–LiBH4 systems and analyze why Ni addition improve hydrogen sorption rates while LiBH4 enhance the hydrogen storage capacity. Although all composites with Ni addition showed significantly improved hydrogen storage kinetics compared with the pure MgH2, the fastest hydrogen sorption kinetics is obtained for Ni-doped MgH2. The formation of Mg2Ni/Mg2NiH4 in Ni-doped MgH2 composite and its microstructure allows to uptake 5.0 wt% of hydrogen in 25 s and to release it in 8 min at 275 °C. In the MgH2–Ni–LiBH4 composite, decomposition of LiBH4 occurs during the first dehydriding leading to the formation of diborane, which has a Ni catalyst poison effect via the formation of a passivating boron layer. A combination of FTIR, XRD and volumetric measurements demonstrate that the formation of MgNi3B2 in the MgH2–Ni–LiBH4 composite happens in the subsequent hydriding cycle from the reaction between Mg2Ni/Mg2NiH4 and B. Activation energy analysis demonstrates that the presence of Ni particles has a catalytic effect in MgH2–Ni and MgH2–Ni–LiH systems, but it is practically nullified by the addition of LiBH4. The beneficial role of LiBH4 on the hydrogen storage capacity of the MgH2–Ni–LiBH4 composite is discussed.  相似文献   

20.
Ternary eutectic Mg76.87Ni12.78Y10.35 (at. %) ribbons with mixed amorphous and nanocrystalline phases were prepared by melt spinning. The microstructures of the melt-spun, hydrogenated and dehydrogenated samples were examined and compared by X-ray diffraction and transmission electron microscopy. The amorphous structure transforms into a thermally stable nanocrystalline structure with a grain size of about 5 nm during hydrogen ab/desorption cycles. The Mg, Mg2Ni and phases with Y in the melt-spun state transform into MgH2, Mg2NiH4, Mg2NiH0.3, YH2 and YH3 after hydrogenation, and transform back to Mg, Mg2Ni and YH2 upon subsequent dehydrogenation. The reaction enthalpy (ΔH) and entropy (ΔS) of the higher plateau pressure corresponding to Mg2Ni hydride formation are −53.25 kJ mol−1 and −107.74 J K−1 mol−1, respectively. The amorphous/nanocrystalline structure effectively reduces the enthalpy and entropy of Mg2Ni hydride formation, but has little effect on Mg. The activation energy for dehydrogenation of the hydrogenated ribbons is 69 kJ mol−1. This suggests that Mg–Ni–Y with ternary eutectic composition can form an amorphous/nanocrystalline structure by melt spinning, and this nanostructure efficiently improves the thermodynamics and kinetics for hydrogen storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号