首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The effects of TiO2 nanopowder addition on the dehydrogenation behaviour of LiAlH4 have been studied. The 5 wt.% TiO2-added LiAlH4 sample showed a significant improvement in dehydrogenation rate compared to that of undoped LiAlH4, with the dehydrogenation temperature reduced from 150 °C to 60 °C. Kinetic desorption results show that the added LiAlH4 released about 5.2 wt% hydrogen within 30 min at 100 °C, while the as-received LiAlH4 just released below 0.2 wt.% hydrogen within same time at 120 °C. From the Arrhenius plot of the hydrogen desorption kinetics, the apparent activation energy is 114 kJ/mol for pure LiAlH4 and 49 kJ/mol for the 5 wt.% TiO2 added LiAlH4, indicating that TiO2 nanopowder adding significantly decreased the activation energy for hydrogen desorption of LiAlH4. X-ray diffraction and Fourier transform infrared analysis show that there is no phase change in the cell volume or on the Al-H bonds of the LiAlH4 due to admixture of TiO2 after milling. X-ray photoelectron spectroscopy results show no changes in the Ti 2p spectra for TiO2 after milling and after dehydrogenation. The improved dehydrogenation behaviour of LiAlH4 in the presence of TiO2 is believed to be due to the high defect density introduced at the surfaces of the TiO2 particles during the milling process.  相似文献   

2.
The hydrogen storage properties of LiAlH4 doped efficient TiN catalyst were systematically investigated. We observe that TiN catalyst enhances the dehydrogenation kinetics and decreases the dehydrogenation temperature of LiAlH4. The dehydrogenation behaviors of 2%TiN–LiAlH4 are investigated using temperature programmed desorption (TPD), differential scanning calorimetry (DSC) and fourier transform infrared spectroscopy (FTIR). Interestingly, the onset hydrogen desorption temperature of 2%TiN–LiAlH4 sample gets lowered from 151.0 °C to 90.0 °C with a faster kinetics, and the dehydrogenation rate reached a maximum value at 137.2 °C. By adding a small amount of as-prepared TiN, approximately 7.1 wt% of hydrogen can be released from the LiAlH4 at 130 °C. Interestingly, the result of the FTIR indicates that the 2%TiN–LiAlH4 maybe restore hydrogen under 5.5 MPa hydrogen. Moreover, 2%TiN–LiAlH4 displayed a substantially reduced activation energy for LiAlH4 dehydrogenation.  相似文献   

3.
Herein, it is reported that activated carbon (AC) alters the hydrogen storage behavior of lithium alanate (LiAlH4) prepared by the ball milling technique. Notable improvements in onset decomposition temperature and desorption kinetics are attained for LiAlH4 added 10 wt.% of AC composite compared to as-received and as-milled LiAlH4. The onset decomposition temperature of LiAlH4-10 wt.% AC dropped to 100 °C and 160 °C for the first and second steps. The composite also released 3.4 wt.% of hydrogen after 90 min compared to as-received and as-milled which is less than 0.2 wt.% of hydrogen within the same period. The XRD result discovered an additional peak of the Li3AlH6 and Al compounds appeared after the milling process, concluding that LiAlH4 becomes unstable after the addition of AC. FTIR measurement has verified the presence of the Li3AlH6 and carbon bonding in the LiAlH4-10 wt.% AC composite. The composite's activation energy (Ea) for the first and second steps is 70 kJ/mol and 85 kJ/mol, respectively. These values decrease from as-milled LiAlH4 for both steps, demonstrating the catalytic effect of AC in this system. FESEM images illustrate that after ball milling, the particle size of LiAlH4-10 wt.% AC composite decreases. The considerable improvement in the hydrogen storage characteristic of the LiAlH4-10 wt.% AC composite is thought to be the collaborative role of amorphous carbon.  相似文献   

4.
Lithium aluminum hydride (LiAlH4) is considered as an attractive candidate for hydrogen storage owing to its favorable thermodynamics and high hydrogen storage capacity. However, its reaction kinetics and thermodynamics have to be improved for the practical application. In our present work, we have systematically investigated the effect of NiCo2O4 (NCO) additive on the dehydrogenation properties and microstructure refinement in LiAlH4. The dehydrogenation kinetics of LiAlH4 can be significantly increased with the increase of NiCo2O4 content and dehydrogenation temperature. The 2 mol% NiCo2O4-doped LiAlH4 (2% NCO–LiAlH4) exhibits the superior dehydrogenation performances, which releases 4.95 wt% H2 at 130 °C and 6.47 wt% H2 at 150 °C within 150 min. In contrast, the undoped LiAlH4 sample just releases <1 wt% H2 after 150 min. About 3.7 wt.% of hydrogen can be released from 2% NCO–LiAlH4 at 90 °C, where total 7.10 wt% of hydrogen is released at 150 °C. Moreover, 2% NCO–LiAlH4 displayed remarkably reduced activation energy for the dehydrogenation of LiAlH4.  相似文献   

5.
The catalytic effects of rare earth fluoride REF3 (RE = Y, La, Ce) additives on the dehydrogenation properties of LiAlH4 were carefully investigated in the present work. The results showed that the dehydrogenation behaviors of LiAlH4 were significantly altered by the addition of 5 mol% REF3 through ball milling. The destabilization ability of these catalysts on LiAlH4 has the order: CeF3>LaF3>YF3. For instance, the temperature programmed desorption (TPD) analyses showed that the onset dehydrogenation temperature of CeF3 doped LiAlH4 was sharply reduced by 90 °C compared to that of pristine LiAlH4. Based on differential scanning calorimetry (DSC) analyses, the dehydriding activation energies of the CeF3 doped LiAlH4 sample were 40.9 kJ/mol H2 and 77.2 kJ/mol H2 for the first and second dehydrogenation stages, respectively, which decreased about 40.0 kJ/mol H2 and 60.3 kJ/mol H2 compared with those of pure LiAlH4. In addition, the sample doped with CeF3 showed the fastest dehydrogenation rate among the REF3 doped LiAlH4 samples at both 125 °C and 150 °C during the isothermal desorption. The phase changes in REF3 doped LiAlH4 samples during ball milling and dehydrogenation were examined using X-ray diffraction and the mechanisms related to the catalytic effects of REF3 were proposed.  相似文献   

6.
LiAlH4 containing 5 wt.% of nanometric Fe (n-Fe) shows a profound mechanical dehydrogenation by continuously desorbing hydrogen (H2) during high energy ball milling reaching ∼3.5 wt.% H2 after 5 h of milling. In contrast, no H2 desorption is observed during low energy milling of LiAlH4 containing n-Fe. Similarly, no H2 desorption occurs during high energy ball milling for LiAlH4 containing micrometric Fe (μ-Fe) and, for comparison, both the micrometric and nanometric Ni (μ-Ni and n-Ni) additive. X-ray diffraction studies show that ball milling results in a varying degree of the lattice expansion of LiAlH4 for both the Fe and Ni additives. A volumetric lattice expansion larger than 1% results in the profound destabilization of LiAlH4 accompanied by continuous H2 desorption during milling according to reaction: LiAlH4 (solid) → 1/3Li3AlH6 + 2/3Al + H2. It is hypothesized that the Fe ions are able to dissolve in the lattice of LiAlH4 by the action of mechanical energy, replacing the Al ions and forming a substitutional solid solution. The quantity of dissolved metal ions depends primarily on the total energy of milling per unit mass of powder generated within a prescribed milling time, the type of additive ion e.g. Fe vs. Ni and on the particle size (micrometric vs. nanometric) of metal additive. For thermal dehydrogenation the average apparent activation energy of Stage I (LiAlH4 (solid) → 1/3Li3AlH6 + 2/3Al + H2) is reduced from the range 76 to 96 kJ/mol for the μ-Fe additive to about 60 kJ/mol for the n-Fe additive. For Stage II dehydrogenation (1/3Li3AlH6 → LiH+1/3Al + 0.5H2) the average apparent activation energy is within the range 77–93 kJ/mol, regardless of the particle size of the Fe additive (μ-Fe vs. n-Fe). The n-Fe and n-Ni additives, the latter used for comparison, provide nearly identical enhancement of dehydrogenation rate during isothermal dehydrogenation at 100 °C. Ball milled (LiAlH4 + 5 wt.% n-Fe) slowly self-discharges up to ∼5 wt.% H2 during storage at room temperature (RT), 40 and 80 °C. Fully dehydrogenated (LiAlH4 + 5 wt.% n-Fe) has been partially rehydrogenated up to 0.5 wt.% H2 under 100 bar/160°C/24 h. However, the rehydrogenation parameters are not optimized yet.  相似文献   

7.
We investigated the effects of NbF5 addition by ball milling on the hydrogen storage properties of LiAlH4. Pressure-composition-temperature (PCT) experiments showed that addition of 0.5 and 1 mol% NbF5 in LiAlH4 improves the onset desorption temperature and results in little decrease in hydrogen capacity, with approximately 7.0 wt% released by 188 °C. Isothermal dehydriding kinetics measurements indicated that the NbF5-doped sample shows an average dehydrogenation rate 5–6 times faster than that of the as-received LiAlH4 sample. In the x-ray diffraction results, there are distinct peaks of Al and LiH that appear after desorption. There is no peak of NbF5 before or after desorption. Desorption kinetics measurements indicated that the activation energy, EA, for LiAlH4 + 1 mol% NbF5 is about 67 kJ/mol for first reaction stage and about 77 kJ/mol for second reaction stage. The desorption process was further characterised by differential scanning calorimetry, and the possible mechanism of the effects of NbF5 addition is discussed.  相似文献   

8.
The hydrogen desorption properties of MgH2–LiAlH4 composites obtained by mechanical milling for different milling times have been investigated by Thermal Desorption Spectroscopy (TDS) and correlated to the sample microstructure and morphology analysed by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The MgH2–LiAlH4 composites show improved hydrogen desorption properties in comparison with both as-received and ball-milled MgH2. Mixing of MgH2 with small amount of LiAlH4 (5 wt.%) using short mechanical milling (15 min) shifts, in fact, the hydrogen desorption peak to lower temperature than those observed with both as-received and milled MgH2 samples. Longer mixing times of the MgH2–LiAlH4 composites (30 and 60 min) reduce the catalytic activity of the LiAlH4 additive as revealed by the shift of the hydrogen desorption peak to higher temperatures.  相似文献   

9.
Lithium alanate (LiAlH4) is a material that can be potentially used for solid-state hydrogen storage due to its high hydrogen content (10.5 wt%). Nevertheless, a high desorption temperature, slow desorption kinetic, and irreversibility have restricted the application of LiAlH4 as a solid-state hydrogen storage material. Hence, to lower the decomposition temperature and to boost the dehydrogenation kinetic, in this study, we applied K2NiF6 as an additive to LiAlH4. The addition of K2NiF6 showed an excellent improvement of the LiAlH4 dehydrogenation properties. After adding 10 wt% K2NiF6, the initial decomposition temperature of LiAlH4 within the first two dehydrogenation steps was lowered to 90 °C and 156 °C, respectively, that is 50 °C and 27 °C lower than that of the аs-milled LiAlH4. In terms of dehydrogenation kinetics, the dehydrogenation rate of K2NiF6-doped LiAlH4 sample was significantly higher as compared to аs-milled LiAlH4. The K2NiF6-doped LiAlH4 sample can release 3.07 wt% hydrogen within 90 min, while the milled LiAlH4 merely release 0.19 wt% hydrogen during the same period. According to the Arrhenius plot, the apparent activation energies for the desorption process of K2NiF6-doped LiAlH4 are 75.0 kJ/mol for the first stage and 88.0 kJ/mol for the second stage. These activation energies are lower compared to the undoped LiAlH4. The morphology study showed that the LiAlH4 particles become smaller and less agglomerated when K2NiF6 is added. The in situ formation of new phases of AlNi and LiF during the dehydrogenation process, as well as a reduction in particle size, is believed to be essential contributors in improving the LiAlH4 dehydrogenation characteristics.  相似文献   

10.
Profuse mechanical dehydrogenation occurs during controlled high energy ball milling of LiAlH4 containing 5 wt.% of the nanometric interstitial compounds such as n-TiC, n-TiN and n-ZrC which involves a gradual decomposition of LiAlH4 to the mixture of Li3AlH6 and Al (Stage I) followed by a further decomposition of Li3AlH6 to the mixture of Al and LiH (Stage II). XRD reveals that the interstitial compounds remain stable in the hydride matrix during entire ball milling duration. The effectiveness of the nanometric interstitial compound additives for mechanical dehydrogenation increases on the order of n-TiN > n-TiC > n-ZrC. X-ray diffraction (XRD) reveals that there is no measurable change in a unit cell volume of LiAlH4 after ball milling which indicates that an accelerated mechanical dehydrogenation of LiAlH4 containing the nanometric interstitial compounds is unrelated to the lattice expansion as we have already reported for the nanometric metal Fe (n-Fe). In addition, the observed strong catalytic activity of the nanometric interstitial compounds for mechanical dehydrogenation is not related to their valence electron concentration (VEC) number. However, the n-TiN additive, which is the most effective one for mechanical dehydrogenation, has the smallest average particle size of 20 nm and the largest Specific Surface Area (SSA > 80 m2/g). For thermal dehydrogenation in Stage I the average apparent activation energy, EA, for the interstitial compound additives is within the range of 87–96 kJ/mol whereas, for comparison, the nanometric metallic additives, n-Fe and n-Ni, exhibit drastically smaller apparent activation energy on the order of 55–70 kJ/mol. The average apparent activation energy for thermal dehydrogenation in Stage II is in the range of 63–80 kJ/mol in the order of EA(n-ZrC) < EA(n-Ti = n-TiC) and is lower than that for the nanometric metal additives n-Ni and n-Fe. In summary, the nanometric interstitial compounds do not substantially affect the apparent activation energy of Stage I but are able to reduce the apparent activation energy of thermal dehydrogenation in Stage II. XRD reveals that the interstitial compounds remain stable in the hydride matrix up to the dehydrogenation temperature of at least 165 °C. Ball milled LiAlH4 containing 5 wt.% n-TiC, n-TiN and n-ZrC is able to slowly discharge large quantities of H2 up to 5–6 wt.% during storage at 40 °C. Unfortunately, the results of rehydrogenation at 165 °C under 95 bar for 5 h indicate that LiAlH4 containing the nanometric interstitial compounds exhibits no rehydrogenation.  相似文献   

11.
The mutual destabilization of LiAlH4 and MgH2 in the reactive hydride composite LiAlH4-MgH2 is attributed to the formation of intermediate compounds, including Li-Mg and Mg-Al alloys, upon dehydrogenation. TiF3 was doped into the composite for promoting this interaction and thus enhancing the hydrogen sorption properties. Experimental analysis on the LiAlH4-MgH2-TiF3 composite was performed via temperature-programmed desorption (TPD), differential scanning calorimetry (DSC), isothermal sorption, pressure-composition isotherms (PCI), and powder X-ray diffraction (XRD). For LiAlH4-MgH2-TiF3 composite (mole ratio 1:1:0.05), the dehydrogenation temperature range starts from about 60 °C, which is 100 °C lower than for LiAlH4-MgH2. At 300 °C, the LiAlH4-MgH2-TiF3 composite can desorb 2.48 wt% hydrogen in 10 min during its second stage dehydrogenation, corresponding to the decomposition of MgH2. In contrast, 20 min was required for the LiAlH4-MgH2 sample to release so much hydrogen capacity under the same conditions. The hydrogen absorption properties of the LiAlH4-MgH2-TiF3 composite were also improved significantly as compared to the LiAlH4-MgH2 composite. A hydrogen absorption capacity of 2.68 wt% under 300 °C and 20 atm H2 pressure was reached after 5 min in the LiAlH4-MgH2-TiF3 composite, which is larger than that of LiAlH4-MgH2 (1.75 wt%). XRD results show that the MgH2 and LiH were reformed after rehydrogenation.  相似文献   

12.
Study on the catalytic roles of MgFe2O4 on the dehydrogenation performance of LiAlH4 was carried out for the first time. Notable improvement on the dehydrogenation of LiAlH4–MgFe2O4 compound was observed. The initial decomposition temperatures for the catalyzed LiAlH4 were decreased to 95 °C and 145 °C for the first and second stage reactions, which were 48 °C and 28 °C lower than the milled LiAlH4. As for the desorption kinetics performance, the MgFe2O4 doped-LiAlH4 sample was able to desorb faster with a value of 3.5 wt% of hydrogen in 30 min (90 °C) while the undoped LiAlH4 was only able to desorb 0.1 wt% of hydrogen. The activation energy determined from the Kissinger analysis for the first two desorption reactions were 73 kJ/mol and 97 kJ/mol; which were 31 and 17 kJ/mol lower as compared to the milled LiAlH4. The X-ray diffraction result suggested that the MgFe2O4 had promoted significant improvements by reducing the LiAlH4 decomposition temperature and faster desorption kinetics through the formation of active species of Fe, LiFeO2 and MgO that were formed during the heating process.  相似文献   

13.
In this paper, the hydrogen storage properties and reaction mechanism of the 4MgH2 + LiAlH4 composite system with the addition of Fe2O3 nanopowder were investigated. Temperature-programmed-desorption results show that the addition of 5 wt.% Fe2O3 to the 4MgH2 + LiAlH4 composite system improves the onset desorption temperature to 95 °C and 270 °C for the first two dehydrogenation stage, which is lower 40 °C and 10 °C than the undoped composite. The dehydrogenation and rehydrogenation kinetics of 5 wt.% Fe2O3-doped 4MgH2 + LiAlH4 composite were also improved significantly as compared to the undoped composite. Differential scanning calorimetry measurements indicate that the enthalpy change in the 4MgH2–LiAlH4 composite system was unaffected by the addition of Fe2O3 nanopowder. The Kissinger analysis demonstrated that the apparent activation energy of the 4MgH2 + LiAlH4 composite (125.6 kJ/mol) was reduced to 117.1 kJ/mol after doping with 5 wt.% Fe2O3. Meanwhile, the X-ray diffraction analysis shows the formation of a new phase of Li2Fe3O4 in the doped composite after the dehydrogenation and rehydrogenation process. It is believed that Li2Fe3O4 acts as an actual catalyst in the 4MgH2 + LiAlH4 + 5 wt.% Fe2O3 composite which may promote the interaction of MgH2 and LiAlH4 and thus accelerate the hydrogen sorption performance of the MgH2 + LiAlH4 composite system.  相似文献   

14.
The effects of K2TiF6 on the dehydrogenation properties of LiAlH4 were investigated by solid-state ball milling. The onset decomposition temperature of 0.8 mol% K2TiF6 doped LiAlH4 is as low as 65 °C that 85 °C lower than that of pristine LiAlH4. Isothermal dehydrogenation properties of the doped LiAlH4 were studied by PCT (pressure–composition–temperature). The results show that, for the 0.8 mol% K2TiF6 doped LiAlH4 that dehydrogenated at 90 °C, 4.4 wt% and 6.0 wt% of hydrogen can be released in 60 min and 300 min, respectively. When temperature was increased to 120 °C, the doped LiAlH4 can finish its first two dehydrogenation steps in 170 min. DSC results show that the apparent activation energy (Ea) for the first two dehydrogenation steps of LiAlH4 are both reduced, and XRD results suggest that TiH2, Al3Ti, LiF and KH are in situ formed, which are responsible for the improved dehydrogenation properties of LiAlH4.  相似文献   

15.
The addition of a catalyst and ball milling process was found to be one of the efficient method to reduce the decomposition temperature and improve the desorption kinetics of lithium aluminium hydride (LiAlH4). In this paper, a transition metal oxide, LaFeO3 was used as a catalyst. Decomposition temperature of the 10 wt% of LaFeO3-doped LiAlH4 system was found to be lowered from 143 °C to 103 °C (first step) and from 175 °C to 153 °C (second step), respectively. In isothermal desorption kinetics, the amount of hydrogen released of the doped sample was improved to 3.9 wt% in 2.5 h at 90 °C. Meanwhile, the undoped sample had released less than 1.0 wt% of hydrogen under the same condition. The activation energy of the LaFeO3-doped LiAlH4 sample was measured to be 73 kJ/mol and 90 kJ/mol for the first two dehydrogenation reactions compared to 107 kJ/mol and 119 kJ/mol for the undoped sample. The improvements of desorption properties were the results from the formation of LiFeO2, Fe and La or La-containing phase during the heating process.  相似文献   

16.
The dehydrogenation temperature of LiAlH4 was significantly reduced by the production of mixtures with ZrCl4. Stoichiometric 4:1, and 5 mol % mixtures of LiAlH4 and ZrCl4 were produced by ball milling at room temperature and ?196 °C, and tested for dehydrogenation at low temperature. Cryogenic ball-milling resulted in an effective way to produce reactive mixtures for hydrogen release; because of achieving small aggregates size (5–20 μm) in 10 min of cryomilling while preventing substantial decomposition during preparation. Dehydrogenation reaction in the mixtures LiAlH4/ZrCl4 started around 31–47 °C under different heating rates. Partial dehydrogenation was proved at 70 °C: 4.4 wt % for the 5 mol% ZrCl4–LiAlH4 mixture, and 3.4 wt % for the best 4:1 stoichiometric mixture. Complete dehydrogenation up to 250 °C released 6.4 wt% and 4.1 wt%, respectively. Dehydrogenation reactions are exothermic, and the LiAlH4/ZrCl4 mixtures are unstable and difficult to handle. The activation energy of the exothermic reactions was estimated as 113.5 ± 9.8 kJ/mol and 40.6 ± 6.6 kJ/mol for 4LiAlH4+ZrCl4 and 5%mol ZrCl4+LiAlH4 samples milled in cryogenic conditions, respectively. The dehydrogenation pathway was changed in the LiAlH4/ZrCl4 mixtures as compared to pure LiAlH4. Dehydrogenation reaction is proposed to form Al, LiCl, Zr, and H2 as main products. Modification of the dehydrogenation reaction of LiAlH4 was achieved at the cost of reducing the total hydrogen release capacity.  相似文献   

17.
Lithium alanate (LiAlH4) is considered as a promising material for storing hydrogen (H2) in solid-state form for onboard applications due to its advantage of high gravimetric H2 capacity. LiAlH4 could release H2 ~7.9 wt.% when heated up to ~250 °C. Nevertheless, the high desorption temperature, sluggish desorption kinetics, and irreversibility hamper the application of LiAlH4 for solid-state H2 storage materials. Therefore, in this study, we have used aluminum titanate (Al2TiO5) as an additive to diminish the desorption temperature and enhance the desorption kinetics of LiAlH4. The addition of a small amount of Al2TiO5 (5 wt.%) into LiAlH4 significantly decreased the decomposition temperature and enhanced the desorption kinetics, in which Al2TiO5-doped LiAlH4 started to release H2 at ~90 °C and was able to desorb H2 as much as ~3.5 wt.% at 90 °C within 1 h. Without the catalyst, pure LiAlH4 starts to release H2 at ~145 °C and only desorbs H2 as low as 0.3 wt.% at 90 °C within 1 h. The activation energies for H2 release in the two-step desorption process of LiAlH4 were reduced after catalysis with Al2TiO5. The activation energies of as-milled LiAlH4 were 80 kJ/mol and 91 kJ/mol, respectively, as calculated by the Arrhenius plot. The activation energies were lowered to 68 kJ/mol and 79 kJ/mol after milling with Al2TiO5. The scanning electron microscopy images revealed that the LiAlH4 particles became smaller and less agglomerated when Al2TiO5 was added. It is believed that the in-situ formation of active species during the desorption process and reduction in particles size play a vital role in improving the dehydrogenation properties of the Al2TiO5-doped LiAlH4 system.  相似文献   

18.
The various Mg–B–Al–H systems composed of Mg(BH4)2 and different Al-sources (metallic Al, LiAlH4 and its decomposition products) have been investigated as potential hydrogen storage materials. The role of Al was studied on the dehydrogenation and the rehydrogenation of the systems. The results indicate that the different Al-sources exhibit a similar improving effect on the dehydrogenation properties of Mg(BH4)2. Taking the Mg(BH4)2 + LiAlH4 system as an example, at first LiAlH4 rapidly decomposes into LiH and Al, then Mg(BH4)2 decomposes into MgH2 and B, finally the MgH2 reacts with Al, LiH and B, which forms Mg3Al2 and MgAlB4. The system starts to desorb H2 at 140 °C and desorbs 3.6 wt.% H2 below 300 °C, while individual Mg(BH4)2 starts to desorb H2 at 250 °C and desorbs only 1.3 wt.% H2 below 300 °C. The isothermal desorption kinetics of the Mg–B–Al–H systems is about 40% faster than that of Mg(BH4)2 at the hydrogen desorption ratio of 90%. In addition, the Mg–B–Al–H systems show partial reversibility at moderate temperature and pressure. For Al-added system, the product of rehydrogenation is MgH2, while for LiAlH4-added system the product is composed of LiBH4 and MgH2.  相似文献   

19.
Thermogravimetric analysis of LiAlH4 chemically mixed with different additives is reported for the application of hydrogen storage. Here, we illustrated the dehydrogenation properties of combined LiAlH4/LiNH2 (2:1) mixture and LiAlH4 wet-doped with different transition metals (Sc, Ti, and V) in their chloride forms. Thermal gravimetric analysis of LiAlH4/LiNH2 system released 7.9 wt.% of hydrogen in three decomposition steps at temperatures between 75 and 280 °C under a heating ramp of 5 °C min−1. The LiAlH4 doped with transition metals showed the decrease of decomposition temperature down to 30–40 °C for both 1st and 2nd dehydrogenation steps as compared to as-received LiAlH4. The catalytic activity in lowering the dehydrogenation temperature of LiAlH4 doped with transition metals increases in the order of pure LiAlH4 < V < Ti < Sc. The X-ray diffraction analysis, field emission scanning electron microscopy, and Fourier transformation infra-red spectroscopy techniques were carried out in support of the thermogravimetric results.  相似文献   

20.
In the present work, the catalytic effect of TiF3 on the dehydrogenation properties of LiAlH4 has been investigated. Decomposition of LiAlH4 occurs during ball milling in the presence of 4 mol% TiF3. Different ball milling times have been used, from 0.5 h to 18 h. With ball milling time increasing, the crystallite sizes of LiAlH4 get smaller (from 69 nm to 43 nm) and the dehydrogenation temperature becomes lower (from 80 °C to 60 °C). Half an hour ball milling makes the initial dehydrogenation temperature of doped LiAlH4 reduce to 80 °C, which is 70 °C lower than as-received LiAlH4. About 5.0 wt.% H2 can be released from TiF3-doped LiAlH4 after 18 h ball milling in the range of 60 °C–145 °C (heating rate 2 °C min−1). TiF3 probably reacts with LiAlH4 to form the catalyst, TiAl3. The mechanochemical and thermochemical reactions have been clarified. However, the rehydrogenation of LiAlH4/Li3AlH6 can not be realized under 95 bar H2 in the presence of TiF3 because of their thermodynamic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号