首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Silica supported Ni catalyst is highly active for the CO2 reforming of methane but it has poor stability due to coke formation. In this work, a glow discharge plasma was applied for the decomposition of nickel nitrate on the SiO2 support, followed by thermal calcination in air. The plasma treatment enhances the interactions between the Ni particles and the silica and significantly improves the Ni dispersion. The plasma-treated Ni/SiO2 catalyst exhibits comparable activity to the Ni/SiO2 catalyst prepared by the thermal method without plasma treatment. The coke resistance of the Ni/SiO2 catalyst is significantly enhanced by the plasma treatment.  相似文献   

2.
A series of Ni/SiO2 catalysts containing different amounts of Gd2O3 promoter was prepared, characterized by H2-adsorption and XRD, and used for carbon dioxide reforming of methane (CRM) and methane autothermal reforming with CO2 + O2 (MATR) in a fluidized-bed reactor. The results of pulse surface reactions showed that Ni/SiO2 catalysts containing Gd2O3 promoter could increase the activity for CH4 decomposition, and Raman analysis confirmed that reactive carbon species mainly formed on the Ni/SiO2 catalysts containing Gd2O3 promoter. In this work, it was found that methane activation and reforming reactions proceeded according to different mechanisms after Gd2O3 addition due to the formation of carbonate species. In addition, Ni/SiO2 catalysts containing Gd2O3 promoter demonstrated higher activity and stability in both CRM and MATR reactions in a fluidized bed reactor than Ni/SiO2 catalysts without Gd2O3 even at a higher space velocity.  相似文献   

3.
Ni catalyst supported on MgAl2O4 mixed oxide was prepared by solid state synthesis, co-precipitation and wet impregnation. The mixed oxide support was synthesized by the solid state synthesis at room temperature (MgAl2O4solid) and co-precipitation method (MgAl2O4cop) respectively, followed by wet impregnation for Ni loading. The catalytic performances of these samples were compared in carbon dioxide reforming of methane at 700 °C. The results showed that the catalyst Ni/MgAl2O4solid with mixed oxide support prepared by solid state synthesis greatly affected the properties and performance of the catalyst. The catalyst Ni/MgAl2O4solid showed higher CO2 and CH4 conversion than the Ni/MgAl2O4cop catalyst with the support prepared by conventional co-precipitation method. In addition, the BET surface area of the catalyst Ni/MgAl2O4solid was three times larger than the catalyst Ni/MgAl2O4cop.  相似文献   

4.
The objective of the study is to investigate the catalytic performance of Cr-promoted Ni/char in CO2 reforming of CH4 at 850 °C. The char obtained from the pyrolysis of a long-flame coal at 1000 °C was used as the support. The catalysts were prepared by incipient wetness impregnation methods with different metal precursor doping sequence. The characterization of the composite catalysts was evaluated by XRD, XPS, SEM-EDS, TEM, H2-TPR, CO2-TPD, CH4-TPSR, and CO2-TPO. The results indicate that the catalyst prepared by co-impregnation of Ni and Cr possess higher activity than those by sequential impregnation. The optimal loading of Cr on 5 wt% Ni/char is 7.8 wt‰. Moreover, the molar feed ratio of CH4/CO2 has a considerable effect on both the stability and the activity of Cr–Ni/char. The main effect of Cr is the great enhance of the adsorption to CO2. It is interesting that the conversions of CH4 and CO2 over Cr-promoted Ni/char and Ni/char decrease initially, following by a steady rise as the reaction proceeds with time-on-stream (TOS). In addition, cyclic tests were conducted and no distinct deterioration in the catalytic performance of the catalysts was observed. On the basis of the obtained results, nickel carbide was speculated to be the active species which was formed during the CO2 reforming of CH4 reaction.  相似文献   

5.
Nickel on zirconium-modified silica was prepared and tested as a catalyst for reforming methane with CO2 and O2 in a fluidized-bed reactor. A conversion of CH4 near thermodynamic equilibrium and low H2/CO ratio (1<H2/CO<2) were obtained without catalyst deactivation during 10 h, in a most energy efficient and safe manner. A weight loading of 5 wt% zirconium was found to be the optimum. The catalysts were characterized using X-ray diffraction (XRD), H2-temperature reaction (H2-TPR), CO2-temperature desorption (CO2-TPD) and transmission election microscope (TEM) techniques. Ni sintering was a major reason for the deactivation of pure Ni/SiO2 catalysts, while Ni dispersed highly on a zirconium-promoted Ni/SiO2 catalyst. The different kinds of surface Ni species formed on ZrO2-promoted catalysts might be responsible for its high activity and good resistance to Ni sintering.  相似文献   

6.
CO2 reforming with simultaneous steam reforming or partial oxidation of methane to syngas over NdCoO3 perovskite-type mixed metal oxide catalyst (prereduced by H2) at different process conditions has been investigated. In the simultaneous CO2 and steam reforming, the conversion of methane and H2O and also the H2/CO product ratio are strongly influenced by the CO2/H2O feed-ratio. In the simultaneous CO2 reforming and partial oxidation of methane, the conversion of methane and CO2, H2 selectivity and the net heat of reaction are strongly influenced by the process parameters (viz. temperature, space velocity and relative concentration of O2 in the feed). In both cases, no carbon deposition on the catalyst was observed. The reduced NdCoO3 perovskite-type mixed-oxide catalyst (Co dispersed on Nd2O3) is a highly promising catalyst for carbon-free CO2 reforming combined with steam reforming or partial oxidation of methane to syngas.  相似文献   

7.
In this paper autothermal reforming of methane (ATR) was carried out over MgAl2O4 supported Ni catalysts with various Ni loadings. MgAl2O4 spinel with high specific surface area, as nanocrystalline carrier for nickel catalysts was synthesized by co-precipitation method with the addition of pluronic P123 triblock copolymer as surfactant. The prepared samples were characterized by XRD, BET, TEM, SEM, TPR and TPH techniques. The results demonstrated that methane conversion is significantly increased with increasing the Ni content and methane conversion of 15% Ni/MgAl2O4 was higher than that of other catalysts in all operation temperatures. Furthermore the influences of H2O/CH4, and O2/CH4 molar ratio in feed and GHSV on activity of 5% Ni/MgAl2O4 catalyst were investigated.  相似文献   

8.
A series of Pt-Ni bimetallic catalysts supported on δ-Al2O3 to be used in carbon dioxide reforming of methane was prepared and tested with the objective of optimizing the Ni/Pt metal composition to obtain high activity and stability. Selected catalyst samples, before and after reaction, were characterized by XRD, XPS, TGA/DTA and SEM-EDS. The activity results showed that the catalytic performance of bimetallic Pt-Ni samples strongly depended on the metal loadings and Ni/Pt loading ratio. Among all the catalysts, 0.3%Pt-10%Ni/Al2O3, which has the lowest Ni/Pt ratio, exhibited the highest catalytic activity and stability. The combined characterization and catalyst performance tests results reveal that low Ni/Pt molar loading ratio of 0.3%Pt-10%Ni/Al2O3 sample led to a relatively easy reduction of nickel oxide species and smaller nano-sized nickel particles having better dispersion caused by the intimate interaction between Pt and Ni sites in the closed vicinity. The changes in the catalysts’ activity and stability under the presence of an additional oxygen source were determined through addition of small amounts of either oxygen or water vapor to the feed stream. The results of the combined dry reforming and partial oxidation tests strongly indicated a change in surface reaction mechanism depending on the Pt load and Ni/Pt ratio of the catalysts. 0.3Pt-10Ni was capable of operating under a variety of feed conditions without significant deactivation suggesting that the catalyst is very promising for synthesis gas production for gas-to-liquid technology.  相似文献   

9.
A series of nickel-based catalyst supported on silica (Ni/SiO2) with different loading of Ce/Ni (molar ratio ranging from 0.17 to 0.84) were prepared using conventional co-impregnation method and were applied to synthesis gas production in the combination of CO2 reforming with partial oxidation of methane. Among the cerium-containing catalysts, the cerium-rich ones exhibited the higher activity and stability than the cerium-low ones. The temperature-programmed reduction (TPR) and UV–vis diffuse reflectance spectroscopy (UV–vis DRS) analysis revealed that the addition of CeO2 reduced the chemical interaction between Ni and support, resulting in an increase in reducibility and dispersion of Ni. Over NiCe-x/SiO2 (x = 0.17, 0.50, 0.67, 0.84) catalysts, the reduction peak in TPR profiles shifted to the higher temperature with increasing Ce/Ni molar ratio, which was attributed to the smaller metallic nickel size of the reduced catalysts. The transmission electron microscopy (TEM) and X-ray diffraction (XRD) for the post-reaction catalysts confirmed that the promoter retained the metallic nickel species and prevented the metal particle growth at high reaction temperature. The NiCe-0.84/SiO2 catalyst with small Ni particle size exhibited the stable activity with the constant H2/CO molar ratio of 1.2 during 6-h reaction in the combination of CO2 reforming with partial oxidation of methane at 850 °C and atmospheric pressure.  相似文献   

10.
The aim of this study is to investigate the promotional effect of Ce on Ni/ZSM-5 catalysts in the CO2 reforming of CH4 reaction. The evaluation of the catalytic performances of the composite catalysts was conducted in a fixed-bed reactor at atmospheric pressure. The influencing factors, including temperature, Ni and Ce loadings, molar feed ratio of CO2/CH4, and time-on-stream (TOS), were investigated. The characteristics of the catalysts were checked with Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The reduction and the basic properties of the composite catalysts were elucidated by temperature-programmed reduction by H2 (H2-TPR) and temperature-programmed desorption of CO2 (CO2-TPD), respectively. The reactivity of deposited carbon was studied by sequential temperature-programmed surface reaction of CH4 (CH4-TPSR) and temperature-programmed oxidation using CO2 and O2 (CO2-TPO and O2-TPO). Results indicate that higher CH4 conversion, H2 selectivity, and desired H2/CO ratio for 5 wt% Ni & 5 wt% Ce/ZSM-5 could be achieved with CO2/CH4 feed ratio close to unity over the temperature range of 500–900 °C. Moreover, the addition of Ce could not only promote CH4 decomposition for H2 production but also the gasification of deposited carbon with CO2. The dispersion of Ni particles could be improved with Ce presence as well. A partial reduction of CeO2 to CeAlO3 was observed from XPS spectra over 5 wt% Ni & 5 wt% Ce/ZSM-5 after H2 reduction and 24 h CO2–CH4 reforming reaction. Benefiting from the introduction of 5 wt% Ce, the calculated apparent activation energies of CH4 and CO2 over the temperature range of 700–900 °C could be reduced by 30% and 40%, respectively.  相似文献   

11.
A new spectrally selective NbAlN/NbAlON/Si3N4 tandem absorber was deposited on copper substrates using a reactive direct current magnetron sputtering system. A high solar absorptance (0.956) and a low emittance (0.07) were achieved by gradually decreasing the refractive index from the substrate to the surface. The tandem absorber was characterized using solar spectrum reflectometer and emissometer, X-ray photoelectron spectroscopy, phase-modulated spectroscopic ellipsometry, atomic force microscopy and micro-Raman spectroscopy techniques. In order to study the thermal stability of the tandem absorbers, they were subjected to heat treatment (in air and vacuum) at different durations and temperatures. The tandem absorber deposited on copper substrate exhibited high solar selectivity in the order of 13–15 even after heat treatment in air up to 500 °C for 2 h. These tandem absorbers also exhibited high thermal stability (450 °C) in air for longer durations (116 h). The onset of oxidation for the tandem absorber deposited on silicon substrates was 650 °C, indicating a high oxidation resistance. The results of the present study indicate the importance of NbAlN/NbAlON/Si3N4 tandem absorber for high-temperature solar selective applications.  相似文献   

12.
A series of Y2O3-promoted NiO/SBA-15 (9 wt% Ni) catalysts (Ni:Y weight ratio = 9:0, 3:1, 3:2, 1:1) were prepared using a sol–gel method. The fresh as well as the catalysts used in CO2 reforming of methane were characterized using N2-physisorption, XRD, FT-IR, XPS, UV, HRTEM, H2-TPR, O2-TPD and TG techniques. The results indicate that upon Y2O3 promotion, the Ni nanoparticles are highly dispersed on the mesoporous walls of SBA-15 via strong interaction between metal ions and the HO–Si-groups of SBA-15. The catalytic performance of the catalysts were evaluated at 700 °C during CH4/CO2 reforming at a gas hourly space velocity of 24 L gcat−1 h−1(at 25 °C and 1 atm) and CH4/CO2molar ratio of 1. The presence of Y2O3 in NiO/SBA-15 results in enhancement of initial catalytic activity. It was observed that the 9 wt% Y–NiO/SBA-15 catalyst performs the best, exhibiting excellent catalytic activity, superior stability and low carbon deposition in a time on stream of 50 h.  相似文献   

13.
The present study aims at exploring a concept which can convert coal-bed methane (containing methane, air and carbon dioxide) to synthesis gas. Without pre-separation and purification, the low-cost synthesis gas can be produced by coupling air partial oxidation and CO2 reforming of coal bed methane. For this purpose, the co-precipitated Ni-Mg-ZrO2 catalyst was prepared. It was found that the co-precipitated Ni-Mg-ZrO2 catalyst exhibited the best activity and stability at 800 °C during the reaction. The conversions of CH4 and CO2 maintained at 94.8% and 82.1% respectively after 100 h of reaction. The effect of reaction temperature was investigated. The H2/CO ratio in the product was mainly dependent on the feed gas composition. By changing O2/CO2 ratio of the feed gases, the H2/CO ratio in the off-gas varied between 0.8 and 1.8. The experimental results showed that the high thermal stability and basic properties of the catalyst, and the strong metal-support interaction played important roles in improving the activity and stability of the catalyst. With the combined reactions and the Ni-Mg-ZrO2 catalyst, the coal bed methane could be converted to synthesis gas, which can meet the need of the subsequent synthesis processes.  相似文献   

14.
Ce0.75Zr0.25O2 solid solution supported Ru catalysts were prepared and tested for CH4–CO2 reforming. The effect of Ru content on the properties of the catalysts was investigated by means of N2 adsorption–desorption, H2-TPR/MS, XRD, XPS, CO chemisorption and H2-TPD/MS. It was found that the highly dispersed Ru species favored the interaction between Ru and Ce0.75Zr0.25O2. The reduced Ce0.75Zr0.25O2 was able to store hydrogen, while Ru promoted the reduction of Ce0.75Zr0.25O2. Under the identical conditions, the CH4 and CO2 conversions of the catalysts increased with the increase of Ru content, however, the turnover frequencies of CH4 and CO2 were higher for the catalysts with lower Ru contents, which may be resulted from the strong interaction between Ru and Ce0.75Zr0.25O2. The Ru catalyst exhibited good stability and excellent resistance to carbon deposition. Remarkably, zirconium and cerium hydrides were detected in the used catalyst, which may participate in the elimination of the carbon deposit. Apart from the nature of metallic Ru and the redox property of Ce0.75Zr0.25O2, we suggest that the excellent resistance of the catalyst to carbon deposition is also attributed to the hydrogen storage of the reduced Ce0.75Zr0.25O2.  相似文献   

15.
This study focuses on hydrogen production from the steam reforming of model bio-oil over Ni/Al2O3 catalysts prepared in two different geometries (monolith and pellet) using the dip-coating and wet impregnation methods and characterized using Powder X-Ray diffraction, Temperature Programmed Reduction, Scanning Electron Microscopy (SEM) and BET Surface area analysis. The effects of the catalyst geometry and reforming temperatures were studied by carrying out experiments at the optimal conditions of T = (823, 923, 1023) K and S/C ratio = 13 determined from the thermodynamic analysis of the process prior to the experiments using the process simulator PRO-II. The experimental results showed high steady state H2 yield corresponding to 2.58 and 1.73 mol (out of 5.13 mol) using monolithic and the pelletized catalysts respectively. The product distribution achieved with the monolithic catalyst was closer to the thermodynamic results suggesting a higher selectivity to hydrogen production.  相似文献   

16.
CO2 methanation was performed over 10 wt%Ni/CeO2, 10 wt%Ni/α-Al2O3, 10 wt%Ni/TiO2, and 10 wt%Ni/MgO, and the effect of support materials on CO2 conversion and CH4 selectivity was examined. Catalysts were prepared by a wet impregnation method, and characterized by BET, XRD, H2-TPR and CO2-TPD. Ni/CeO2 showed high CO2 conversion especially at low temperatures compared to Ni/α-Al2O3, and the selectivity to CH4 was very close to 1. The surface coverage by CO2-derived species on CeO2 surface and the partial reduction of CeO2 surface could result in the high CO2 conversion over Ni/CeO2. In addition, superior CO methanation activity over Ni/CeO2 led to the high CH4 selectivity.  相似文献   

17.
Ni/xY2O3–Al2O3 (x = 5, 10, 15, 20 wt%) catalysts were prepared by sequential impregnation synthesis. The catalytic performance for the autothermal reforming of methane was evaluated and compared with Ni/γ-Al2O3 catalyst. The physicochemical properties of catalysts were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-Ray Photoelectron Spectrometer (XPS), Thermo Gravimetric Analyzer (TGA) and H2-temperature programmed reduction techniques (TPR). The decrease of nickel particle size and the change of reducibility were found with Y modification. The CH4 conversion increased with elevating levels of Y2O3 from 5% to 10%, then decreased with Y content from 10% to 20%. Ni/xY2O3–Al2O3 catalysts maintained high activity after 24 h on stream, while Ni/Al2O3 had a significant deactivation. The characterization of spent catalysts indicated that the addition of Y retarded Ni sintering and decreased the amount of coke.  相似文献   

18.
Nanocrystalline calcium aluminate (CaO.2Al2O3) was prepared by a simple co-precipitation method using Poly (ethylene glycol)-block-poly(propylene glycol)-block poly(ethylene glycol) (PEG-PPG-PEG, MW:5800) as surfactant and employed as catalyst support for nickel catalysts in methane reforming with carbon dioxide. The prepared samples were characterized by X-ray diffraction (XRD), N2 adsorption (BET), Temperature programmed reduction and oxidation (TPR-TPO) and Scanning electron microscopy (SEM) techniques. The results showed that the prepared support has a high potential as support for nickel catalysts in methane reforming with carbon dioxide. The results showed high catalytic activity and stability for the prepared catalysts. Among the prepared catalysts 15% Ni/CaO.2Al2O3 was the most active catalyst and showed the highest affinity for carbon formation. In addition, 7% Ni/CaO.2Al2O3 possessed high catalytic stability during 50 h time on stream. The TPO analysis revealed that increasing in nickel content increased the amount of deposited carbon over the spent catalysts. SEM results detected only whisker type of carbon for all spent catalysts.  相似文献   

19.
Bioethanol was reformed in supercritical water (SCW) at 500 °C and 25 MPa on Ni/Al2O3 and Ni/CeZrO2/Al2O3 catalysts to produce high-pressure hydrogen. The results were compared with non-catalytic reactions. Under supercritical water and in a non-catalytic environment, ethanol was reformed to H2, CO2 and CH4 with small amounts of CO and C2 gas and liquid products. The presence of either Ni/Al2O3 or Ni/CeZrO2/Al2O3 promoted reactions of ethanol reforming, dehydrogenation and decomposition. Acetaldehyde produced from the decomposition of ethanol was completely decomposed into CH4 and CO, which underwent a further water-gas shift reaction in SCW. This led to great increases in ethanol conversion and H2 yield on the catalysts of more than 3-4 times than that of the non-catalytic condition. For the catalytic operation, adding small amounts of oxygen at oxygen to ethanol molar ratio of 0.06 into the feed improved ethanol conversion, at the expense of some H2 oxidized to water, resulting in a slightly lower H2 yield. The ceria-zirconia promoted catalyst was more active than the unpromoted catalyst. On the promoted catalyst, complete ethanol conversion was achieved and no coke formation was found. The ceria-zirconia promoter has important roles in improving the decomposition of acetaldehyde, the enhancement of the water-gas shift as well as the methanation reactions to give an extremely low CO yield and a tremendously high H2/CO ratio. The SCW environment for ethanol reforming caused the transformation of gamma-alumina towards the corundum phase of the alumina support in the Ni/Al2O3 catalyst, but this transformation was slowed down by the presence of the ceria-zirconia promoter.  相似文献   

20.
Commercial multicrystalline Si (mc-Si) wafers containing SiC and Si3N4 inclusions and wire-sawing defects on their surfaces were collected from an mc-Si wafer manufacturer. The mc-Si, used for solar cells, was grown using industrial directional solidification systems. The technique of controlled etching was applied to these mc-Si wafers to dissolve a certain amount of silicon from the surface of each wafer and to partially expose SiC and Si3N4 inclusions inside these wafers to allow for direct observation. The physical presence and morphologies of the SiC and Si3N4 inclusions within the mc-Si wafers were investigated using scanning electron microscopy. SiC inclusions were composed of SiC particles of different sizes, and they were usually present as clusters embedded within the mc-Si wafers. Si3N4 inclusions were present as rods distributed within the mc-Si wafers. It has been shown that the presence of SiC particles is responsible for the formation of the wire-sawing defects, while Si3N4 particles are readily sawed across without introducing wire-sawing defects during the wire-sawing process. This work will provide an important base-line for further investigation on how these inclusions affect the photovoltaic performance of mc-Si solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号