首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of this work is to analyze the hydrodynamic/electrochemical performance of a solid oxide fuel cell operating on nitrogen diluted hydrogen/oxygen mixture. In this respect, a three-dimensional numerical model of a single-chamber solid oxide fuel cell (SC-SOFC) is developed. The model incorporates the coupled effects of fluid flow in a rectangular duct with mass transport in porous electrodes, selective electrochemical reactions (i.e. hydrogen oxidation on anode and oxygen reduction on cathode) on individual electrodes while operating on nitrogen diluted hydrogen–oxygen mixture. Results show the effect of depletion of gaseous mixture due to hydrogen and oxygen consumption along the flow direction. The model can predict hydrodynamic/electrochemical effects by varying the porosity of the gas diffusion electrodes/catalyst layers. The model is formulated in COMSOL Multiphysics 3.4, a commercial Finite Element Method (FEM) based software package.  相似文献   

2.
An experimentally validated, two-dimensional, axisymmetric, numerical model of micro-tubular, single-chamber solid oxide fuel cell (MT-SC-SOFC) has been developed. The model incorporates methane full combustion, steam reforming, dry reforming and water-gas shift reaction followed by electrochemical oxidation of produced hydrogen within the anode. On the cathode side, parasitic combustion of methane along with the electrochemical oxygen reduction is implemented. The results show that the poor performance of single-chamber SOFC as compared to the conventional (dual-chamber) SOFC (in case of micro-tubes) is due to the mass transport limitation on the anode side. The gas velocity inside the micro-tube is far too low when compared to the gas-chamber inlet velocity. The electronic current density is also non-uniform over the cell length, mainly due to the short length of the anode current collector located at the cell outlet. Furthermore, the higher temperature near the cell edges is due to the methane combustion (very close to the cell inlet) and current collection point (at the cell outlet). Both of these locations could be sensitive to the silver current collecting wire as silver may rupture due to cell overheating.  相似文献   

3.
Micro-tubular, solid oxide fuel cells consisting of nickel, yttria-stabilized zirconia (Ni-YSZ) anode, yttria-stabilized zirconia (YSZ) electrolyte and lanthanum strontium cobaltite ferrite-gadolinium doped ceria (LSCF-GDC) cathode have been developed and operated under single-chamber conditions, utilizing methane/air mixture. The cell performance was compared with a silver modified cathode by the addition of 10wt% silver-paste in LSCF-GDC cathode. The cells with and without silver addition yielded maximum power densities of 118.75 mW cm−2 and 61.53 mW cm−2 at 700 °C, respectively. The results demonstrate that silver is a good candidate for enhancing the oxidation reduction kinetics via improved adsorption, desorption, dissociation and subsequent diffusion. However, long term performance of the silver modified cathode is not guaranteed under single-chamber conditions.  相似文献   

4.
In the present study, structural stability of silver under single-chamber conditions has been examined. Micro-tubular cells made of conventional solid oxide fuel cell materials (Ni-YSZ/YSZ/LSM) with silver paste and silver current-collecting wires (for both electrodes) were prepared. The cells were operated with methane/air mixture of 25/60 mL min−1, furnace temperature of 750 °C, and at an operating voltage of 0.5 V. The results showed increasing porosity in the current-collecting silver wire with time, leading to rupture, finally. It is postulated that the porosity formation could be due to the formation of silver oxide which is highly unstable (volatile) at operating temperature considered in this study. Furthermore, vaporization and melting of silver due to cell overheating under mixed-reactant conditions is expected. Based on experimental evidences, it is concluded that silver may not be a good choice to be employed under the above specified operating conditions, as it lacks long-term structural stability.  相似文献   

5.
This paper exploits the suitability of three perovskite materials Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF), GdBaCo2O5+δ (GBC) and Ba0.5Sr0.5Mn0.7Fe0.3O3−δ (BSMF) as SOFC cathodes in the single-chamber configuration operating at the intermediate temperature range. TG analysis showed high thermal stability depending on the crystalline phases of the materials. The catalytic activity of these three materials for hydrocarbon conversion was investigated under a realistic feed, i.e. with hydrocarbon, oxygen, water and carbon dioxide. Electrochemical impedance spectroscopy of the various cathodes tested in symmetric cell configuration revealed a B-site dependence of the electrode catalytic activity for oxygen reduction. High temperature (1000 °C) powder reactivity tests over a gadolinium doped-ceria (CGO) and perovskite cathode revealed excellent chemical compatibility of BSMF and CGO. Catalytic tests associated with thermal and structural characterization attest to the suitability of these materials in the single-chamber configuration.  相似文献   

6.
A parametric analysis is carried out in order to investigate the effect of different microstructural and operating parameters on the performance of a micro-tubular, single-chamber solid oxide fuel cell (MT-SC-SOFC). The results show that the cathode morphology (its microstructure and material) are important factors to consider. Other parameters such as inlet velocity (flow rate) and mixing ratio are also very effective in improving the cell performance but these parameters should be carefully controlled in order to avoid their counter-effects, like, lower fuel utilization, anode coking and oxidation-reduction. There are some other parameters such as, operating pressure, electrode porosity, permeability and cathode radiative emissivity, which have minimal effect in performance enhancement.  相似文献   

7.
A micro-tubular, solid oxide fuel cell stack has been developed and operated under single-chamber conditions. The stack, made of three single-cells, arranged in triangular configuration, was operated between 500 and 700 °C with varying methane/air mixtures. The results show that the operating conditions for the stack differ significantly than the single-cell operation reported in our earlier study. The stack operated at 600 °C with methane/oxygen mixture of 1.0 gives stable performance for up to 48 h, whereas for the single-cell, this mixing ratio was not suitable. The increase in the inert gas flow rate improves the stack performance up to a certain extent, beyond that; the power output by the stack reduces due to extensive dilution of the reactants. It is concluded that both, the operating conditions and the addition of inert gas, need to be tuned according to the number of cells present within the stack.  相似文献   

8.
Anode supported, micro-tubular, solid oxide fuel cells made of nickel, yttria-stabilized zirconia (Ni-YSZ) anode, yttria-stabilized zirconia (YSZ) electrolyte and lanthanum strontium manganite (LSM) cathode have been prepared and operated under single-chamber conditions. Four different cells with varying cathode location/size, i.e. inlet, center, outlet and full size have been compared. The highest temperature rise of ∼93 °C and the highest power density of ∼36 mW cm−2 (at a furnace temperature of 750 °C with methane/air = 25/60 mL min−1) was observed in the case of cathode-inlet configuration. The scanning electron microscope (SEM) analysis shows that both the anode and cathode were badly damaged near the cell inlet in case of cathode-inlet configuration. On the contrary, both of the electrodes remained undamaged in case of cathode-outlet configuration.  相似文献   

9.
The single-chamber solid oxide fuel cell (SC-SOFC) is a simplification of the conventional dual-chamber SOFC and has great potential for meeting portable power generation needs. While the high energy density of hydrocarbon fuels makes SC-SOFC a promising candidate as a power source for scenarios where portability is most preferred, the low efficiency and fuel utilization reported by many experimental groups have presented a major barrier keeping it from real application.  相似文献   

10.
Coplanar single-chamber micro solid oxide fuel cells (SC-μSOFCs) with curvilinear microelectrode configurations of arbitrarily complex two-dimensional geometry were fabricated by a direct-write microfabrication technique using conventional fuel cell materials. The electrochemical performance of two SC-μSOFCs with different electrode shapes, but comparable electrode and inter-electrode dimensions, was characterized in a methane–air mixture at 700 °C. Both cells exhibited stable open circuit voltage and peak power density of 0.9 V and 2.3 mW cm−2, respectively, indicating that electrode shape did not have a significant influence on the performance of these fuel cells.  相似文献   

11.
Co-planar, single-chamber, solid oxide fuel cells (SC-SOFCs) with linearly patterned electrode structures on one surface of the electrolyte are fabricated via a robo-dispensing method. The SC-SOFCs with various electrode patterns are prepared to investigate the relationship between electrode geometry and cell performance. The open-circuit voltage (OCV) for cells with a single electrode pair is unaffected by the anode-to-cathode distance. By contrast, for cells with multiple electrode pairs, increasing the number of electrode pairs leads to a gradual decrease in OCV. These observations confirm that the inter-mixing of product gases causes a loss in OCV and power density, which in turn reduces the oxygen partial pressure gradient between the anode and cathode. Keeping the electrode pairs apart by ∼4 mm permits cells with complex electrode geometry to exhibit higher OCVs and power densities.  相似文献   

12.
Anode-supported, micro-tubular solid oxide fuel cells were prepared and operated, utilizing mixed-reactant (methane and air mixture) supply. The cells were composed of conventional materials, i.e. nickel, yttria-stabilized zirconia (Ni-YSZ) as anode supported material, yttria-stabilized zirconia (YSZ) as electrolyte, and lanthanum strontium manganite (LSM) as cathode material. The cells were operated at various temperatures in between 550 and 800 °C with varying methane/air ratio (1:1-1:4.76). Cell performance was found to be strongly dependent on flow rate and mixing ratio. At 750 °C, the maximum open circuit voltage (OCV) of the cell was 1.05 V at a methane/air ratio of 1:4.76, with a maximum power output of 122 mW cm−2. The degradation test shows 0.05% performance loss per 24 h, thereafter, fluctuations in current density were observed due to oxidation-reduction cycles over nickel surface. It is therefore concluded that although the methane/air ratio of 1:4.76 gives the best performance but the long-term performance is not guaranteed under such conditions.  相似文献   

13.
An annular micro-stack array consisting of four fuel cells has been fabricated and operated successfully in single-chamber conditions using a nitrogen-diluted oxygen-methane mixture as the operating gas. The single cells consist of a state-of-the-art porous NiO/Y2O3-stabilized ZrO2 (YSZ) anode support, a YSZ electrolyte membrane and a modified La0.7Sr0.3MnO3 (LSM) cathode. The annular configuration of the array is favorable for utilizing the heating effect. The maximum power output of the annular stack decreases with increasingCH4/O2 ratio. Its performance increases with increasing CH4 flow rate and decreases with increasing N2 flow rate. The power output of the stack is ∼380 mW at CH4/O2 = 1 and an N2 flow rate of 100 sccm and the average maximum power density of each cell is ∼190 mW cm−2. The average performance of each cell in the annular micro-stack array is higher than that of an additional single cell placed next to the stack.  相似文献   

14.
The electrochemical performance of anode-supported single-chamber solid oxide fuel cells (SC-SOFCs) with and without SDC-impregnated cathodes was compared in a diluted methane–oxygen mixture. These cells were made of conventional materials including yttrium-stabilized zirconia (YSZ) thin film, a Ni + YSZ anode and a La0.7Sr0.3MnO3 (LSM) cathode. Our results showed that the cell performance was greatly enhanced with the SDC-impregnated LSM cathode. At a furnace temperature of 750 °C, the maximum power density was as high as 404 mW cm−2 for a CH4 to O2 ratio of 2:1, which was 4.0 times higher than the cell with a pure LSM cathode (100 mW cm−2). The overall polarization resistance of the impregnated cell was 1.6 Ω cm2, which was much smaller than that of the non-impregnated one (4.2 Ω cm2). The impregnation introduced SDC nanoparticles greatly extended the electrochemical active zone and hence greatly improved the cell performance.  相似文献   

15.
Non-sealed solid oxide fuel cell (NS-SOFC) micro-stacks with two gas channels were fabricated and operated successfully under various CH4/O2 gas mixtures in a box-like stainless-steel chamber. The cells with an anode-facing-cathode configuration were connected in serial by zigzag sliver sheets. Each cell consisted of the Ni/yttria-stabilized zirconia (YSZ) anode, the YSZ electrolyte, and the Sm0.2Ce0.8O1.9-impregnated (La0.75Sr0.25)0.95MnO3 cathode. In this configuration, to ensure the identical gas distribution over the electrode surfaces, two gas channels with small vents flanking the stacks were used as gas channels of methane and oxygen for anodes and cathodes, respectively. The selectivity requirement of both the anode and cathode for the oxidation and reduction of CH4 and O2 was lowered and the sheets could extend the residence time of gas flow over the electrode surface. By the direct flame heat with a liquefied petroleum gas burner, the stacks presented a rapid start-up and full utilization of the exhaust gas. Eventually, an open-circuit voltage (OCV) of 1.8 V and maximum power output of 276 mW was produced by a two-cell stack. For a four-cell stack, a maximum power output of 373 mW was obtained.  相似文献   

16.
A utilized regenerative solid oxide fuel cell (URSOFC) provides the dual function of performing energy storage and power generation, all in one unit. When functioning as an energy storage device, the URSOFC acts like a solid oxide electrolyzer cell (SOEC) in water electrolysis mode; whereby the electric energy is stored as (electrolyzied) hydrogen and oxygen gases. While hydrogen is useful as a transportation fuel and in other industrial applications, the URSOFC also acts as a solid oxide fuel cell (SOFC) in power generation mode to produce electricity when needed. The URSOFC would be a competitive technology in the upcoming hydrogen economy on the basis of its low cost, simple structure, and high efficiency. This paper reports on the design and manufacturing of its anode support cell using commercially available materials. Also reported are the resulting performance, both in electrolysis and fuel cell modes, as a function of its operating parameters such as temperature and current density. We found that the URSOFC performance improved with increasing temperature and its fuel cell mode had a better performance than its electrolysis mode due to a limited humidity inlet causing concentration polarization. In addition, there were great improvements in performance for both the SOFC and SOEC modes after the first test and could be attributed to an increase in porosity within the oxygen electrode, which was beneficial for the oxygen reaction.  相似文献   

17.
This paper focuses on multi-objective optimisation (MOO) to optimise the planar solid oxide fuel cell (SOFC) stacks performance using a genetic algorithm. MOO problem does not have a single solution, but a complete Pareto curve, which involves the optional representation of possible compromise solutions. Here, two pairs of different objectives are considered as distinguished strategies. Optimisation of the first strategy predicts a maximum power output of 108.33 kW at a breakeven per-unit energy cost of 0.51 $/kWh and minimum breakeven per-unit energy cost of 0.30 $/kWh at a power of 42.18 kW. In the second strategy, maximum efficiency of 63.93%at a breakeven per-unit energy cost of 0.42 $/kWh is predicted, while minimum breakeven per-unit energy cost of 0.25 $/kWh at efficiency of 48.3% is obtained. The present study creates the basis for selecting optimal operating conditions of SOFC under the face of multiple conflicting objectives.  相似文献   

18.
An energy analysis of three typical solid oxide fuel cell (SOFC) power systems fed by methane is carried out with detailed thermodynamic model. Simple SOFC system, hybrid SOFC‐gas turbine (GT) power system, and SOFC‐GT‐steam turbine (ST) power system are compared. The influences of air ratio and operative pressure on the performance of SOFC power systems are investigated. The net system electric efficiency and cogeneration efficiency of these power systems are given by the calculation model. The results show that internal reforming SOFC power system can achieve an electrical efficiency of more than 49% and a system cogeneration efficiency including waste heat recovery of 77%. For SOFC‐GT system, the electrical efficiency and cogeneration efficiency are 61% and 80%, respectively. Although SOFC‐GT‐ST system is more complicated and has high investment costs, the electrical efficiency of it is close to that of SOFC‐GT system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
A solid oxide fuel cell with internal reforming operation is run at partial fuel utilization; thus, the remaining fuel can be further used for producing additional power. In addition, the exhaust gas of a solid oxide fuel cell still contains carbon dioxide, which is the primary greenhouse gas, and identifying a way to utilize this carbon dioxide is important. Integrating the solid oxide fuel cell with the molten carbonate fuel cell is a potential solution for carbon dioxide utilization. In this study, the performance of the integrated fuel cell system is analyzed. The solid oxide fuel cell is the main power generator, and the molten carbonate fuel cell is regarded as a carbon dioxide concentrator that produces electricity as a by-product. Modeling of the solid oxide fuel cell and the molten carbonate fuel cell is based on one-dimensional mass balance, considering all cell voltage losses. Primary operating conditions of the integrated fuel cell system that affect the system efficiencies in terms of power generation and carbon dioxide utilization are studied, and the optimal operating parameters are identified based on these criteria. Various configurations of the integrated fuel cell system are proposed and compared to determine the suitable design of the integrated fuel cell system.  相似文献   

20.
Direct carbon solid oxide fuel cell (DC‐SOFC) is a promising technology for electricity generation from biomass with high conversion efficiency and low pollution. Biochar derived from wheat straw is utilized as the fuel of a DC‐SOFC, with cermet of silver and gadolinium‐doped ceria as the material of both cathode and anode and yttrium stabilized zirconia as electrolyte. The output performance of a DC‐SOFC operated on pure wheat straw is 197 mW cm?2 at 800°C and increases to 258 mW cm?2 when 5% of Ca, as a catalyst of the Boudouard reaction, is loaded on the wheat straw char. Higher power and fuel conversion utilization are achieved by using Ca as the Boudouard reaction catalyst. X‐ray diffraction, scanning electron microscopy, energy‐dispersive spectrometer, and programmed‐temperature gravimetric experiment are applied to characterize the leaf char. It turns out that the wheat straw char is with porous structure and composed of C, K, Mg, Cl, Fe, and Ca elements. The effects of the Ca catalyst on the Boudouard reaction, the performance of the DC‐SOFCs operated on the wheat straw char, and the economic advantages of the wheat straw char are demonstrated and analyzed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号