首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ni/xY2O3–Al2O3 (x = 5, 10, 15, 20 wt%) catalysts were prepared by sequential impregnation synthesis. The catalytic performance for the autothermal reforming of methane was evaluated and compared with Ni/γ-Al2O3 catalyst. The physicochemical properties of catalysts were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-Ray Photoelectron Spectrometer (XPS), Thermo Gravimetric Analyzer (TGA) and H2-temperature programmed reduction techniques (TPR). The decrease of nickel particle size and the change of reducibility were found with Y modification. The CH4 conversion increased with elevating levels of Y2O3 from 5% to 10%, then decreased with Y content from 10% to 20%. Ni/xY2O3–Al2O3 catalysts maintained high activity after 24 h on stream, while Ni/Al2O3 had a significant deactivation. The characterization of spent catalysts indicated that the addition of Y retarded Ni sintering and decreased the amount of coke.  相似文献   

2.
A novel nickel catalyst supported on Al2O3@ZrO2 core/shell nanocomposites was prepared by the impregnation method. The core/shell nanocomposites were synthesized by depositing zirconium species on boehmite nanofibres. This contribution aims to study the effects of the pore structure of supports and the zirconia dispersed on the surface of the alumina nanofibres on the CO methanation. The catalysts and supports were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR), nitrogen adsorption–desorption, and thermogravimetry and differential thermal analysis (TG-DTA). The catalytic performance of the catalysts for CO methanation was investigated at a temperature range from 300 °C to 500 °C. The results of the characterization indicate that the metastable tetragonal zirconia could be stably and evenly dispersed on the surface of alumina nanofibres. The interlaced nanorods of the Al2O3@ZrO2 core/shell nanocomposites resulted in a macropore structure and the spaces between the zirconia nanoparticles dispersed on the alumina nanofibres formed most of the mesopores. Zirconia on the surface of the support promoted the dispersion and influenced the reduction states of the nickel species on the support, so it prevented the nickel species from sintering as well as from forming a spinel phase with alumina at high temperatures, and thus reduced the carbon deposition during the reaction. With the increase of the zirconia content in the catalyst, the catalytic performance for the CO methanation was enhanced. The Ni/Al2O3@ZrO2-15 exhibited the highest CO conversion and methane selectivity at 400 °C, but they decreased dramatically above or below 400 °C due to the temperature sensitivity of the catalyst. Ni/Al2O3@ZrO2-30 exhibited a high and constant rate of methane formation between 350 °C and 450 °C. The excellent catalytic performance of this catalyst is attributed to its reasonable pore structure and good dispersion of zirconia on the support. This catalyst has great potential to be further studied for the future industrial use.  相似文献   

3.
Ni/Al2O3 nanocatalysts doped with Co and Cu were prepared by co-impregnation and modified by non-thermal plasma. The nanocatalysts were characterized by XRD, FESEM, TEM, EDX dot-mapping, BET, FTIR, TGA-DTG, and XPS analysis. According to XRD and XPS results, good interaction between active phase and support can be observed in both Ni–Co/Al2O3 and Ni–Cu/Al2O3 nanocatalysts. A uniform morphology, high surface area, and well dispersed particles of active sites in Ni–Co/Al2O3 nanocatalyst were observed that shows the effect of cobalt in controlling Ni ensemble size. In contrast Ni–Cu/Al2O3 nanocatalyst had no homogenous dispersion of active phase due to sintering of copper particles. The activity measurements illustrated better Ni–Co/Al2O3 nanocatalyst activity in comparison to Ni/Al2O3 and Ni–Cu/Al2O3 in terms of CH4 and CO2 conversion. H2 and CO yield were higher for Ni–Co/Al2O3 and higher H2/Co ratio was obtained as well. Whereas Ni/Al2O3 and Ni–Co/Al2O3 did not experience deactivation, Ni–Cu/Al2O3 suffered from activity loss by ca. 22% and 16% for CH4 and CO2 conversion, respectively. Sintering most likely happened in Ni–Cu/Al2O3 nanocatalyst due to high temperature of calcination while cobalt by controlling the size of Ni particles, alternated the size of active sites to a size range in which carbon formation was suppressed. Ni/Al ratio from XPS analysis which signifies Ni dispersion on alumina support was 5.15, 9.16, and 6.35 for Ni/Al2O3, Ni–Co/Al2O3, and Ni–Cu/Al2O3 nanocatalysts respectively. The highest ratio of Ni/Al was for Ni–Co/Al2O3 nanocatalyst that shows the best coverage of support by Ni active phase in this nanocatalyst.  相似文献   

4.
Alumina supported nickel (Ni/Al2O3), nickel–cobalt (Ni–Co/Al2O3) and cobalt (Co/Al2O3) catalysts containing 15% metal were synthesized, characterized and tested for the reforming of CH4 with CO2 and CH4 cracking reactions. In the Ni–Co/Al2O3 catalysts Ni–Co alloys were detected and the surface metal sites decreased with decrease in Ni:Co ratio. Turnover frequencies of CH4 were determined for both reactions. The initial turnover frequencies of reforming (TOFDRM) for Ni–Co/Al2O3 were greater than that for Ni/Al2O3, which suggested a higher activity of alloy sites. The initial turnover frequencies for cracking (TOFCRK) did not follow this trend. The highest average TOFDRM, H2:CO ratio and TOFCRK were observed for a catalyst containing a Ni:Co ratio of 3:1. This catalyst also had the maximum carbon deposited during reforming and produced the maximum reactive carbon during cracking. It appeared that carbon was an intermediate product of reforming and the best catalyst was able to most effectively crack CH4 and oxidize carbon to CO by CO2.  相似文献   

5.
The effect of preparation method on the performance of Ni/Al2O3 catalysts for aqueous-phase reforming of ethanol (EtOH) has been investigated. The first catalyst was prepared by a sol–gel (SG) method and for the second one the Al2O3 support was made by a solution combustion synthesis (SCS) route and then the metal was loaded by standard wet impregnation. The catalytic activity of these catalysts of different Ni loading was compared with a commercial Al2O3 supported Ni catalyst [CM (10%)] at different temperatures, pressures, feed flow rates, and feed concentrations. Based on the product distribution, the proposed reaction pathway is a mixture of dehydrogenation of EtOH to CH3CHO followed by C–C bond breaking to produce CO + CH4 and oxidation of CH3CHO to CH3COOH followed by decarbonylation to CO2 + CH4. CH4(C2H6 and C3H8) also can form via Fischer–Tropsch reactions of CO/CO2 with H2. The CH4 (C2H6 and C3H8) reacts to form hydrogen and carbon monoxide through steam reforming, while CO converts to CO2 mostly through the water–gas shift reaction (WGSR). SG catalysts showed poorer WGSR activity than the SCS catalysts. The activation energies for H2 and CO2 production were 153, 155 and 167 kJ/mol and 158, 160 and 169 kJ/mol for SCS (10%), SG (10%), and CM (10%) samples, respectively.  相似文献   

6.
Ni/xPr-Al2O3 (x = 5, 10, 15, 20 wt%) catalysts with an application in autothermal reforming of methane were prepared by sequential impregnation synthesis; its catalytic performance was evaluated and compared with that of Ni/γ-Al2O3 catalyst; the physicochemical properties of the catalysts were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-Ray Photoelectron Spectrometer (XPS), Thermo Gravimetric Analyzer (TGA) and H2-temperature programmed reduction techniques (TPR). The results showed that Pr addition promoted the reduction of nickel particle size on the surface. TPR experiments suggested a heterogeneous distribution of nickel oxide particles over xPr-Al2O3 supports and the promotion of NiO reduction by Pr modification. The CH4 conversion increased with elevating levels of Pr addition from 5% to 10%, then decreased with Pr content from 10% to 20%. For the stability catalytic tests, Ni/xPr-Al2O3 catalysts maintained the high activity after 48 h while Ni/Al2O3 had a significant deactivation.  相似文献   

7.
Ag promoted ZnO/Al2O3 catalysts were prepared by using the incipient wetness impregnation method. The catalytic properties of steam reforming reaction for hydrogen production on the prepared catalysts were evaluated with H2O:C2H5OH molar ratios of 3:1 at 450 °C and atmospheric pressure. Ag promoted ZnO/Al2O3 catalysts show higher SRE catalytic activity than ZnO/Al2O3 catalysts. H2 and CH3CHO are the major products on Ag promoted catalysts, and C2H4 is also produced probably due to acid sites on Al2O3. SRE mechanism on Ag promoted ZnO/Al2O3 catalysts, which contains C-C scission, is different from that on ZnO/Al2O3 catalysts. A method based on thermogravimetry (TG), differential scanning calorimetry (DSC) and mass spectrometry (MS) was used to analysis the coking behavior on catalyst surface. The surfaces of Ag promoted ZnO/Al2O3 catalysts show two different types of coking, and suffer higher coke deposition during the steam reforming reaction.  相似文献   

8.
Dehydrogenation of organic chemical hydrides has been improved by reconstructing the catalyst in the form of hierarchical porous structure nanocatalyst, in which the economical Ni was adopted as catalytic component and nano Al2O3–TiO2 hybrid composite as support. The Al2O3–TiO2 composite was prepared by spontaneous self-assembly of nano Al2O3 and TiO2 aggregates by hydrolysis of tetra-n-butyl-titanate under continuous agitation. The multi-scaled distribution of Al2O3–TiO2 aggregates with hierarchy could be observed in dynamic light scattering spectrometer. The aggregates are comprised of nano-sized γ-Al2O3 and anatase TiO2 crystallites with sizes of about 5 and 7 nm, respectively. The surface modulation by TiO2 could be verified in FTIR Spectra. The migration of Ti species and crystallite growth were hindered by the Al2O3 skeleton and the hierarchical porous structure was sustained during the thermal related process. The multi-scaled distributed pores were confirmed by both TEM analysis and N2 adsorption results. The results of dehydrogenation experiments showed that the hierarchical porous structure nano Ni/Al2O3–TiO2 exhibited superior catalytic performance to Ni/Al2O3 with the optimum conversion of 99.9% at 400 °C, while the catalyst of Ni/Al2O3 exhibited only 16.5% under the same condition.  相似文献   

9.
A highly dispersed 50 wt% Ni/MgO–Al2O3 catalyst was prepared by deposition–precipitation (DP) method for the diesel pre-reforming reaction. The pH of the precursor solution was controlled from pH 9.5 to 12.0 to examine the effects on NiO crystallite size and metal dispersion. The increase of pH of the precursor solution causes an increase of specific surface area and metal dispersion, and reduces NiO crystallite size. The pre-reforming reaction was carried out using n-tetradecane as surrogate compound of diesel. The coke formation of used catalysts was examined by TGA, TEM, SEM, and Raman analysis. The 50 wt% Ni/MgO–Al2O3 catalyst prepared at pH 11.5 showed a high catalytic activity and excellent coke resistance due to high metal dispersion (8.71%), small NiO crystallite size (3.5 nm), and strong interaction between Ni and support. Furthermore, this catalyst showed a good stability in the pre-reforming reaction at S/C ratio of 3.5 and 450 °C for 88 h.  相似文献   

10.
This study focuses on hydrogen production from the steam reforming of model bio-oil over Ni/Al2O3 catalysts prepared in two different geometries (monolith and pellet) using the dip-coating and wet impregnation methods and characterized using Powder X-Ray diffraction, Temperature Programmed Reduction, Scanning Electron Microscopy (SEM) and BET Surface area analysis. The effects of the catalyst geometry and reforming temperatures were studied by carrying out experiments at the optimal conditions of T = (823, 923, 1023) K and S/C ratio = 13 determined from the thermodynamic analysis of the process prior to the experiments using the process simulator PRO-II. The experimental results showed high steady state H2 yield corresponding to 2.58 and 1.73 mol (out of 5.13 mol) using monolithic and the pelletized catalysts respectively. The product distribution achieved with the monolithic catalyst was closer to the thermodynamic results suggesting a higher selectivity to hydrogen production.  相似文献   

11.
The effect of surface modification of an alumina powder supported nano-scale nickel catalyst used in aqueous-phase reforming of ethanol has been explored in this paper. The Al2O3 powder was prepared by a solution combustion synthesis (SCS) route and the surface of the powder was modified by a non-thermal RF plasma treatment using nitrogen gas. Catalysts were coated by an impregnation method. The performances of the unmodified and modified Ni/Al2O3 catalysts have been compared from a catalytic activity, selectivity, and microstructural point of view. The catalytic activity results showed that while nature, relative ratio and selectivity of the products both in gas and liquid effluents did not change, catalytic activity (in terms of EtOH conversion and H2 yield per g) of the sample increased after plasma modification. Microstructural (XRD, surface area) analysis showed that phase content and surface area of unmodified and modified catalysts are similar, while TEM and H2-chemisorption showed higher metal surface area, higher metal dispersion and lower active metal particle size for the modified sample compared to the unmodified sample. The temperature programmed reduction (TPR) analysis demonstrated stronger support-metal interaction and smaller NiO particles for the modified catalyst at lower heat treatment temperature. The temperature programmed desorption (TPD) of ammonia analysis showed stronger acidity for the modified support, which can explain better dispersion of the metal particles on the modified catalyst compared to the unmodified sample.  相似文献   

12.
Cu/ZnO/Al2O3 adsorbents for removal of odorant sulfur compounds were prepared with various Al/Cu molar ratios by co-precipitation method. The sulfur removing ability as a function of Al/Cu molar ratio of the adsorbents for t-butyl mercaptan (TBM), tetrahydro thiophene (THT), dimethyl disulfide (DMS) and H2S were investigated at 250 °C and 6000 h−1 space velocity. Based on the results of adsorption capacity and characterization by various techniques, the optimum Al/Cu ratio for maximum sulfur removal capacity is found to be at Al/Cu molar ratio of 0.15 which possesses the well-dispersed Cu species with high reducibility. The adsorption capacity is highest for H2S followed by TBM, DMS and THT. The main role of Al2O3 component is to provide the dispersion of CuO species homogeneously with small particle formation and high reducibility.  相似文献   

13.
Pt–Cu catalysts supported on Al2O3 and Nb2O5 were studied for use in selective CO oxidation. The addition of copper enhanced the activity and selectivity of Pt–Cu/Nb2O5 at lower temperatures when compared to Pt/Nb2O5. On the other hand, copper addition was not beneficial in the case of Al2O3 supported catalysts.  相似文献   

14.
Steam reforming of methanol was investigated over Cu–ZnO–ZrO2–Al2O3 catalysts at 473 and 573 K. The Cu:Zn:(Al + Zr) molar ratio was 3:3:4; however, the Zr:Al molar ratio was varied and the catalysts were pretreated at different calcination and reduction temperatures. The synthesized catalysts were characterized by N2 physisorption, temperature-programmed reduction with H2 (H2-TPR), X-ray diffraction, oxidized surface TPR, and infrared spectroscopy after carbon monoxide chemisorption. The crystalline size of Cu decreased on increasing the calcination temperatures from 573 to 623 K and increased on increasing the reduction temperatures from 523 to 573 K. Among the tested catalysts, the Cu–ZnO–ZrO2 catalyst exhibited the highest and lowest hydrogen-formation rates at 473 and 573 K, respectively. After the reaction at 573 K, all the tested catalysts exhibited an increase in the Cu crystalline size, causing the catalyst deactivation. Among the tested catalysts, the Cu–ZnO–ZrO2–Al2O3 catalyst, where the Cu:Zn:Al:Zr molar ratio was 3:3:2:2, showed the highest and most stable catalytic activity at 573 K. Cu dispersion and catalyst composition affected the catalytic performance for steam reforming of methanol.  相似文献   

15.
The non-sulfided NiMoCe/Al2O3 catalyst was developed to produce green diesel from the hydroprocessing of Jatropha oil. The NiMoCe/Al2O3 catalysts were prepared by impregnation and characterized by N2-BET, SEM, XRD and TPD-Hads techniques. The straight chain alkanes ranging from C15 to C18 were the main components in product oil. The maximum yield of C15-C18 alkanes of 80%, selectivity of 90% and conversion of 89% were obtained at 370 °C, 3.5 MPa and 0.9 h−1. Influence of reaction temperature (280–400 °C) and reaction time (10–163 h) on the composition of product oil were discussed. The experimental results demonstrated that a suitable amount of metal Ce doping on the NiMo/Al2O3 catalyst presented stable catalytic performance and enhanced Jatropha oil conversion as well as C15-C18 fraction selectivity.  相似文献   

16.
The aqueous-phase reforming (APR) of n-butanol (n-BuOH) over Ni(20 wt%) loaded Al2O3 and CeO2 catalysts has been studied in this paper. Over 100 h of run time, the Ni/Al2O3 catalyst showed significant deactivation compared to the Ni/CeO2 catalyst, both in terms of production rates and the selectivity to H2 and CO2. The Ni/CeO2 catalyst demonstrated higher selectivity for H2 and CO2, lower selectivity to alkanes, and a lower amount of C in the liquid phase compared to the Ni/Al2O3 sample. For the Ni/Al2O3 catalyst, the selectivity to CO increased with temperature, while the Ni/CeO2 catalyst produced no CO. For the Ni/CeO2 catalyst, the activation energies for H2 and CO2 production were 146 and 169 kJ mol−1, while for the Ni/Al2O3 catalyst these activation energies were 158 and 175 kJ mol−1, respectively. The difference of the active metal dispersion on Al2O3 and CeO2 supports, as measured from H2-pulse chemisorption was not significant. This indicates deposition of carbon on the catalyst as a likely cause of lower activity of the Ni/Al2O3 catalyst. It is unlikely that carbon would build up on the Ni/CeO2 catalyst due to higher oxygen mobility in the Ni doped non-stoichiometric CeO2 lattice. Based on the products formed, the proposed primary reaction pathway is the dehydrogenation of n-BuOH to butaldehyde followed by decarbonylation to propane. The propane then partially breaks down to hydrogen and carbon monoxide through steam reforming, while CO converts to CO2 mostly through water gas shift. Ethane and methane are formed via Fischer-Tropsch reactions of CO/CO2 with H2.  相似文献   

17.
In this experimental study, a membrane reactor housing a composite membrane constituted by a thin Pd-layer supported onto Al2O3 is utilized to perform methanol steam reforming reaction to produce high-grade hydrogen for PEM fuel cell applications. The influence of various parameters such as temperature, from 280 to 330 °C, and pressure, from 1.5 to 2.5 bar, is analyzed. A commercial Cu/Zn-based catalyst is packed in the annulus of the membrane reactor and the experimental tests are performed at space velocity equal to 18,500 h−1 and H2O:CH3OH feed molar ratio equal to 2.5:1. Results in terms of methanol conversion, hydrogen recovery, hydrogen yield and products selectivities are given. As a best result of this work, 85% of methanol conversion and a highly pure hydrogen stream permeated through the membrane with a CO content lower than 10 ppm were reached at 330 °C and 2.5 bar. Furthermore, a comparison between the experimental results obtained in this work and literature data is proposed and discussed.  相似文献   

18.
The photocatalytic hydrogen production from aqueous methanol solution was investigated with ZnO/TiO2, SnO/TiO2, CuO/TiO2, Al2O3/TiO2 and CuO/Al2O3/TiO2 nanocomposites. A mechanical mixing method, followed by the solid-state reaction at elevated temperature, was used for the preparation of nanocomposite photocatalyst. Among these nanocomposite photocatalysts, the maximal photocatalytic hydrogen production was observed with CuO/Al2O3/TiO2 nanocomposites. A variety of components of CuO/Al2O3/TiO2 photocatalysts were tested for the enhancement of H2 formation. The optimal component was 0.2 wt% CuO/0.3 wt% Al2O3/TiO2. The activity exhibited approximately tenfold enhancement at the optimum loading, compared with that with pure P-25 TiO2. Nano-sized TiO2 photocatalytic hydrogen technology has great potential for low-cost, environmentally friendly solar-hydrogen production to support the future hydrogen economy.  相似文献   

19.
Oxidative steam reforming of ethanol at low oxygen to ethanol ratios was investigated over nickel catalysts on Al2O3 supports that were either unpromoted or promoted with CeO2, ZrO2 and CeO2–ZrO2. The promoted catalysts showed greater activity and a higher hydrogen yield than the unpromoted catalyst. The characterization of the Ni-based catalysts promoted with CeO2 and/or ZrO2 showed that the variations induced in the Al2O3 by the addition of CeO2 and/or ZrO2 alter the catalyst's properties by enhancing Ni dispersion and reducing Ni particle size. The promoters, especially CeO2–ZrO2, improved catalytic activity by increasing the H2 yield and the CO2/CO and the H2/CO values while decreasing coke formation. This results from the addition of ZrO2 into CeO2. This promoter highlights the advantages of oxygen storage capacity and of mobile oxygen vacancies that increase the number of surface oxygen species. The addition of oxygen facilitates the reaction by regenerating the surface oxygenation of the promoters and by oxidizing surface carbon species and carbon-containing products.  相似文献   

20.
The composition (CuO/ZnO/Al2O3 = 30/60/10) of a commercial catalyst G66B was used as a reference for designing CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts for the oxidative (or combined) steam reforming of methanol (OSRM). The effects of Al2O3, CeO2 and ZrO2 on the OSRM reaction were clearly identified. CeO2, ZrO2 and Al2O3 all promoted the dispersions of CuO and ZnO in CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts. Aluminum oxide lowered the reducibility of the catalyst, and weakened the OSRM reaction. Cerium oxide increased the reducibility of the catalyst, but weakened the reaction. Zirconium oxide improved the reducibility of the catalyst, and promoted the reaction. A lower CuO/ZnO ratio of the catalyst was associated with greater promotion of ZrO2. The critical CuO/ZnO ratio for the promotion of ZrO2 was approximately 0.75–0.8. Introducing of ZrO2 into CuO/ZnO/Al2O3 also improved the stability of the catalyst. Although Al2O3 inhibited the OSRM reaction, a certain amount of it was required to ensure the stability and the mechanical strength of the catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号