首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of aluminium additions on the mechanical behaviour of BaTiO3 positive temperature coefficient of resistance ceramics sintered in air at temperatures ranging between 1220 and 1400° C has been investigated. Tensile strength has been measured indirectly by the diametral compression of lapped discs using concave loading anvils. Values of ∼ 85 and ∼ 110 MPa for samples fired near their optimum sintering temperature were determined for two batches of material, the latter of which contained additions of Al2O3 (0.55 mol%). Strength did not vary systematically with grain size and appeared to be controlled by near surface defects. The size of these cavities, which were generally crescent shaped, was consistent with the material having a bulk fracture toughness of ∼1.3 MPam1/2. The higher mechanical strength of samples which contained Al2O3 additions was attributed to the enhanced “healing up” of these cavities by the liquid phase giving a smaller inherent critical defect size rather than by increasing the bulk toughness of the ceramic.  相似文献   

2.
Reaction sintered β′-sialon ceramics Si6-zAlzOzN8-z, were prepared by slip casting from α-Si3N4, Al2O3, and AlN starting powders. The mechanical properties and microstructures of sintered bodies were investigated as a function of composition (varying the z value). The maximum value of the flexural strength, ∼ 600 MPa, and fracture toughness, ∼ 4.1 MPa m1/2 were observed in the z range of 0.5–1. In the z value range of 2–4, the mechanical properties decreased drastically. This phenomenon is attributed to the variation of fracture energy, which is greatly affected by the sintered crystallite size. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

3.
Strength and fracture toughness of in situ-toughened silicon carbide   总被引:1,自引:0,他引:1  
Fine β-SiC powders either pure or with the addition of 1 wt % of α-SiC particles acting as a seeding medium, were hot-pressed at 1800 °C for 1 h using Y2O3 and Al2O3 as sintering aids and were subsequently annealed at 1900 °C for 2, 4 and 8 h. During the subsequent heat treatment, the β → α phase transformation of SiC produced a microstructure of “in situ composites” as a result of the growth of elongated large α-SiC grains. The introduction of α-SiC seeds into the β-SiC accelerated the grain growth of elongated large grains during annealing which led to a coarser microstructure. The sample strength values decreased as the grain size and fracture toughness continued to increase beyond the level where clusters of grains act as fracture origins. The average strength of the in situ-toughened SiC materials was in the range of 468–667 MPa at room temperature and 476–592 MPa at 900 °C. Typical fracture toughness values of 8 h annealed materials were 6.0 MPa m1/2 for materials containing α-SiC seeds and 5.8 MPa m1/2 for pure β-SiC samples. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

4.
Strength and fracture toughness of reaction-sintered mullite/zirconia composites (RSMZ) and reaction-sintered mullite/alumina/zirconia composites have been investigated as a function of temperature. Thermal shock resistance has also been determined. It was found that dispersion of zirconia particles and the particular microstructure of mullite obtained by means of anin situ reaction process leads to improved properties, with a room temperature fracture toughness of about 5.25 MPa m1/2. Up to 1000° C fracture strength and toughness values are quite high, which make these materials potential candidates for high temperature applications.  相似文献   

5.
Hydroxyapatite (HA) is known to be biocompatible and osteoconductive, and can be synthesized chemically. The objective of the present study is to clarify the effect of pressure during sintering on the mechanical properties of HA. HA was sintered using a hot press system at a uniaxial pressure ranging from 7.81 to 62.5 MPa at a maximum temperature of 1200C with a heating rate of 10C/min. The density of the HA increased with increasing pressure and peaked at the sintering pressure of 31.2 MPa. Four-points bending tests and fracture toughness measurements with indentation method were conducted to clarify the effect of sintering pressure. Bending strength decreased at the pressure > 31.2 MPa. This result indicates that residual stress generated during sintering process became larger with increasing pressure. Fracture toughness were also lower with high density HA.  相似文献   

6.
High toughness and reliable three dimensional textile carbon fiber reinforced silicon carbide composites were fabricated by chemical vapor infiltration. Mechanical properties of the composite materials were investigated under bending, shear, and impact loading. The density of the composites was 2.0–2.1 g cm−3 after the three dimensional carbon preform was infiltrated for 30 h. The values of flexural strength were 441 MPa at room temperature, 450 MPa at 1300°C, and 447 MPa at 1600°C. At elevated temperatures (1300 and 1600°C), the failure behavior of the composites became some brittle because of the strong interfacial bonding caused by the mis-match of thermal expansion coefficients between fiber and matrix. The shear strength was 30.5 MPa. The fracture toughness and work of fracture were as high as 20.3 MPa m1/2 and 12.0 kJ·m−2, respectively. The composites exhibited excellent uniformity of strength and the Weibull modulus, m, was 23.3. The value of dynamic fracture toughness was 62 kJ·m−2 measured by Charpy impact tests.  相似文献   

7.
Perra  M. W.  Finnie  I. 《Journal of Materials Science》1977,12(8):1519-1526
The fracture toughness of a high yield strength grade of hot-pressed beryllium block was determined at room temperature and 300° C. Fatigue cracks were generated in doublecantilever beam specimens by a reversed loading method. Room temperature fracture toughness values from specimens with electric discharge machined notches fell within the scatter band of values from specimens with fatigued precracks. Load—displacement records generated from test on specimens with machined notches exhibited the expected linearity. However, the records were nonlinear from tests on specimens with long cracks formed by repeated propagation and arrest. Evidence points to a crack-closure phenomenon rather than plasticity as the source of the nonlinearity. The fracture toughness data show that specimen orientation or test temperature have little effect. By contrast, reported ductility values for this material are very sensitive to both these variables. The mean value of the fracture toughness ranged from 9.0 MPa m1/2 (8.1 ksi in. 1/2) at 23° C to 10.8 MPa m1/2 (9.7 ksi in. 1/2) at 300° C. These values are among the lowest ever reported for beryllium.  相似文献   

8.
Fracture experiments have been carried out with unnotched and notched tensile specimens of a polyacetal resin at room temperature at various rates of extension. An increase of approximately 13% in yield stress was observed in the unnotched tests with increased deformation rates from 1–1000 mm min–1, whilst strain to failure was reduced from about 85% to approximately 0.05%. In all specimens, failure appeared to have taken place by initiation of a microscopic flaw upon yielding, and this flaw then slowly grew into a critical size when catastrophic fracture set in. In the slow-growth region, the mechanism of failure was by void growth whereby the lamellar texture was transformed into a fibrillar one. However, on the rapid fracture surface, there was evidence of lamellar texture being retained, but with small voids in the stacks of lamellae, In notched fracture specimens containing sharp razor cut, a fracture toughness, K lc, of approximately 5 MPa m1/2 was obtained between crosshead speeds of 0.5 and 50 mm min–1. At speeds of 500 and 1000 mm min–1, the K lc was reduced to 4 MPa m1/2. In the absence of a starter crack, blunt notch fracture toughness of about 6.3 MPa m1/2 was observed at all test speeds. In specimens with a razor cut, the slow-growth region decreased as test speed increased; this can be used to construct an R-curve.  相似文献   

9.
Nanomaterials can easily be prepared as thin films and powders, but are much harder to prepare in bulk form. Nanostructured materials are prepared mainly by consolidation, electrodeposition, and deformation. These processing techniques have problems such as porosity, contamination, high cost, and limitations in refining the grain size. Since most bulk engineering metals are initially prepared by casting, we developed a casting technique, flux-melting and melt-solidification, to prepare bulk nanostructured alloys. The casting technique has such advantages as simplicity, low cost, and full density. In our method, Ag–Cu alloys were melted in B2O3 flux, which removed most of the impurities, mainly oxides, in the melts. Upon solidifying the melt at a relatively slow cooling rate on the order of 101–102 K/s a large undercooling of ∼0.25 T m (where T m is the melting temperature) was achieved. This large undercooling leads to the formation of bulk nanostructured Ag–Cu alloys composed of alternative Ag/Cu lamella and nanocrystals, both ∼50 nm in dimension. Our liquid-processed alloys are fully dense and relatively free from contamination. The nanostructured Ag–Cu alloys have similar yield strength in tension and in compression. The as-quenched alloys have yield strength of 400 MPa, ultimate tensile strength (UTS) of 550 MPa, and plastic elongation of ∼8%. The UTS was further increased to ∼830 MPa after the as-quenched alloy rod was cold drawn to a strain of ∼2. The nanostructured Ag–Cu alloys show a high electrical conductivity (∼80% that of International Annealed Copper Standard), a slight strain hardening (strain-hardening coefficient of 0.10), and a high thermal stability up to a reduced temperature of 2/3 T m. Some of these behaviors are different than those found in previous bulk nanostructured materials synthesized by solid state methods, and are explained based on the unique nanostructures achieved by our flux-melting and melt-solidification technique.  相似文献   

10.
Polycrystalline beta-alumina ceramics containing yttria-doped zirconia particles have been produced by hot-pressing and “two-peak” sintering schedules. With the former fabrication process, both a chemical reaction involving sodium metazirconate and α-alumina, and a direct mixing route were employed. The mechanical properties of the ceramics produced by the direct mixing route were superior to those produced by the chemical route. The maximum amount of tetragonal zirconia retention, and thus fracture toughness, obtained using direct mixing occurred for additions of 4wt% yttria-doped zirconia. An increase of ∼ 124% in the fracture toughness was obtained compared with the pure beta-alumina ceramic. Transfer of this fabrication route to a pressureless sintering schedule was less successful owing to difficulties in attaining full densification. The increases in strength observed with introduction of second phase zirconia could be attributed to an improvement in the degree of densification achieved, and the maximum increase in toughness was only ∼27%.  相似文献   

11.
Dense Al2O3-based composites (≥99.0% of theoretical) dispersed with carbon nanofibers (CNFs) were fabricated using the pulsed electric-current pressure sintering (PECPS) for 5 min at 1300°C and 30 MPa in a vacuum. The dispersion of CNFs into the matrix depended much on the particle size of the starting Al2O3 powders. Mechanical properties of the composites were evaluated in relation with their microstructures; high values of three-point bending strength σb (∼800 MPa) and fracture toughness K IC (∼5 MPa·m1/2) were attained at the composition of CNF/Al2O3 = 5:95 vol%, which σb and K IC values were ∼25% and ∼5%, respectively, higher than those of monolithic Al2O3. This might be due to the small Al2O3 grains (1.6 μm) of dense sintered compacts compared with that (4.4 μm) for the pure Al2O3 ceramics, resulting from the suppression of grain growth during sintering induced by uniformly dispersed CNFs in the matrix. Electrical resistivity of CNF/Al2O3 composites decreased rapidly from >1015 to ∼2.1 × 10−2 Ωm (5vol%CNF addition), suggesting the machinability of Al2O3-based composites by electrical discharge machining.
Ken HirotaEmail:
  相似文献   

12.
Hydroxy apatite ceramic blocks of varying density have been prepared from a commercial powder. The elastic properties, fracture toughness, strength and sub-critical crack growth of these materials have been investigated. Young's modulus for the nearly fully dense material is 112 GPa while the compressive strength is about 800 MPa. For the same material the strength and fracture toughness under dry conditions are 115 MPa and 1.0 MPa m1/2, respectively. Substantial slow crack growth was found under these conditions. Under wet conditions the values for strength and fracture toughness drop to about 75% of their “dry” values. In this case very serious slow crack growth is present.  相似文献   

13.
The evolution of the fracture toughness, K lc, and fracture energy, G lc, of set plasters was determined on notched beams as a function of sample porosity, P, and characteristic size, W. Toughness was found to decrease with decreasing crack width. For set plasters of 57.7% porosity, the lowest toughness measured was K lc=0.13 MPa m1/2 for a crack width of 0.2 mm. For this crack width, fracture toughness and fracture energy linearly changed with porosity: K lc=0.5 1–1.3 P) MPa m1/2 and G lc= 13.47 (1–1.12 P) Jm–2. Dense plasters were more difficult to break than porous ones. The fracture energies were affected by the velocity of the fracture propagation, which induces damaging and multicracking of the material, so that the roughly calculated chemical surface energy of set plaster was too high. After correction it was estimated to be 0.4 J m –2. Finally, because toughness increased with increasing sample size, it was concluded that fracture toughness and energy were not intrinsic parameters of the material. On the other hand, for our sample porosities and sizes, the reduced rupture force, F rupt W –0.65 is a constant and seems to be a characteristic parameter of the mechanical resistance of set plaster beams.  相似文献   

14.
Application of a systems approach to computational materials design led to the theoretical design of a transformation toughened ultratough high-strength plate steel for blast-resistant naval hull applications. A first prototype alloy has achieved property goals motivated by projected naval hull applications requiring extreme fracture toughness (C v > 85 ft-lbs or 115 J corresponding to K Id≥ 200 ksi.in1/2 or 220 MPa.m1/2) at strength levels of 150–180 ksi (1,030–1,240 MPa) yield strength in weldable, formable plate steels. A continuous casting process was simulated by slab casting the prototype alloy as a 1.75′′ (4.45 cm) plate. Consistent with predictions, compositional banding in the plate was limited to an amplitude of 6–7.5 wt% Ni and 3.5–5 wt% Cu. Examination of the oxide scale showed no evidence of hot shortness in the alloy during hot working. Isothermal transformation kinetics measurements demonstrated achievement of 50% bainite in 4 min at 360 °C. Hardness and tensile tests confirmed predicted precipitation strengthening behavior in quench and tempered material. Multi-step tempering conditions were employed to achieve the optimal austenite stability resulting in significant increase of impact toughness to 130 ft-lb (176 J) at a strength level of 160 ksi (1,100 MPa). Comparison with the baseline toughness–strength combination determined by isochronal tempering studies indicates a transformation toughening increment of 65% in Charpy energy. Predicted Cu particle number densities and the heterogeneous nucleation of optimal stability high Ni 5 nm austenite on nanometer-scale copper precipitates in the multi-step tempered samples was confirmed using three-dimensional atom probe microanalysis. Charpy impact tests and fractography demonstrate ductile fracture with C v > 80 ft-lbs (108 J) down to −40 °C, with a substantial toughness peak at 25 °C consistent with designed transformation toughening behavior. The properties demonstrated in this first prototype represent a substantial advance over existing naval hull steels. Achieving these improvements in a single design and prototyping iteration is a significant advance in computational materials design capability.  相似文献   

15.
The fracture toughness and path of stoichiometric spinel (MgAl2O4) crystals were determined at 22 °C for key low-index planes by double cantilever beam, as well as fractography of flexure specimens failing from either machining or indentation flaws. These results are compared with other single and polycrystalline MgAl2O4 fracture toughness values measured by various techniques, as well as single crystal versus polycrystal results for other materials. Evaluation of experimental and theoretical results shows (1) the fracture toughness of the spinel {110} plane is only a limited amount (e.g. 6%) higher than for the {100} plane (1.2 MPa m1/2), (2) fractography of machining flaw fracture origins was the most effective source of K IC results, and (3) caution must be used in applying fracture toughness techniques to single crystals. Cautions include accounting for possible effects of elastic anisotropy (especially for double cantilever beam and probably double torsion tests), the nature of failure-initiating flaws (especially for notch-beam tests), and the frequent lack of symmetric plastic deformation and fracture (especially for indentation techniques).Retired.  相似文献   

16.
High-quality ultra-fine grained (ufg) and nanocrystalline (nc) bulk Cu samples of proper sizes reliable for mechanical testing, with grain sizes (d) ranging from 720 down to 22 nm were prepared by means of room temperature ball-milling and consolidation processes. The specimens were subjected to compressive loading at the quasi-static strain rate of 10−4 s−1 to large strains (ε = 50%). The specimens prepared from the 10-h-milled powder (d = 32 nm) were tested at a wide range of strain rates (10−4 to 1,860 s−1), and the strain rate sensitivity (SRS) of the material was determined as a function of strain. The strength and work-hardening behavior were dramatically influenced by change in the grain size; the strength approached ∼900 MPa for the 30-h-milled Cu (d = 22 nm) at the strain level of ∼50%. The SRS increased several fold as the grain size was reduced to 32 nm. Further, the results obtained in this study were compared with those of other investigators on ufg and nc Cu, to gain insights into the effect of different processing routes on the investigated material properties.  相似文献   

17.
Starting from two microspherical agglomerated HAP powders, porous biphasic HAP/TCP bioceramics were obtained by microwave sintering. During the sintering the HAP powders turned into biphasic mixtures, whereby HAP was the dominant crystalline phase in the case of the sample with the higher Ca/P ratio (HAP1) while α-TCP was the dominant crystalline phase in the sample with lower Ca/P ratio (HAP2). The porous microstructures of the obtained bioceramics were characterized by spherical intra-agglomerate pores and shapeless inter-agglomerate pores. The fracture toughness of the HAP1 and HAP2 samples microwave sintered at 1200 °C for 15 min were 1.25 MPa m1/2. The phase composition of the obtained bioceramics only had a minor effect on the indentation fracture toughness compared to a unique microstructure consisting of spherical intra-agglomerate pores with strong bonds between the spherical agglomerates. Cold isostatic pressing at 400 MPa before microwave sintering led to an increase in the fracture toughness of the biphasic HAP/TCP bioceramics to 1.35 MPa m1/2.  相似文献   

18.
Silicon carbide fibre reinforced glass-ceramic matrix composites have been investigated as a structural material for use in oxidizing environments to temperatures of 1000° C or greater. In particular, the composite system consisting of SiC yarn reinforced lithium aluminosilicate (LAS) glass-ceramic, containing ZrO2 as the nucleation catalyst, has been found to be reproducibly fabricated into composites that exhibit exceptional mechanical and thermal properties to temperatures of approximately 1000° C. Bend strengths of over 700 MPa and fracture toughness values of greater than 17 MN m–3/2 from room temperature to 1000° C have been achieved for unidirectionally reinforced composites of 50 vol% SiC fibre loading. High temperature creep rates of 10–5 h–1 at a temperature of 1000° C and stress of 350 MPa have been measured. The exceptional toughness of this ceramic composite material is evident in its impact strength, which, as measured by the notched Charpy method, has been found to be over 50 times greater than hot-pressed Si3N4.  相似文献   

19.
In situ formation of TiB2 in mullite matrix through the reaction of TiO2, boron and carbon has been studied. In hot-pressed and pressureless-sintered samples, in addition to TiB2, TiC was also found to be dispersed phases in mullite matrix. However, in the case of pressurelesssintered samples, mullite/TiB2 composite with 98% relative density can be obtained through a preheating step held at 1300 °C for longer than 3 h and then sintering at a temperature above 1600 °C. Hot-pressed composite containing 30 vol% TiB2 gives a flexural strength of 427 MPa and a fracture toughness of 4.3 MPam1/2. Pressureless-sintered composite containing 20 vol% TiB2 gives a flexural strength of 384 MPa and a fracture toughness of 3.87 MPam1/2.  相似文献   

20.
The stresses for macroscopic plastic flow and critical stages of fracture, fracture toughness and hardness of sintered plus forged T1 high speed steel were determined. The results are compared to similar data for sintered, sintered to closed porosity plus hot isostatically pressed and electroflux refined (EFR) alloys of comparable composition. EFR meltstock, with addition of 0.6 wt% Mo, was water-atomized in a 200 kg unit which incorporated ceramic filters and an argon shroud to ensure maximum cleanliness. The powder was sieved, <125 μm, vacuum annealed, blended, isostatically compacted and vacuum sintered and hot forged to produce a 300 kg billet. Mechanical properties were determined in four-point bending of heat-treated beam specimens. Most samples showed evidence of macroscopic plastic flow, up to ∼1%, beyond a stress of ∼1.8 GPa, σY. Using surface replica microscopy, crack nucleation was detected at stresses σN, between 0.5 and 0.9 σY, and subcritical short crack growth, at stresses generally larger than σY. Fracture, from crack nuclei associated (only) with fractured M6C carbides, took place at stresses, σF, in the range 1.4 to 3.0 GPa Macroscopic fracture toughness, KIC, was in the range 17–24 MPa m1/2 and, like σN and σF, appeared to depend sensitively on the tempering temperature. The most attractive combination of properties, for the overtempered, 580°C, structure at HV50 ∼750 appears to be: σY≈1.9 GPa, σF≈2.8 GPa, KIC≈23 MPa m1/2. These values are comparable to those for EFR aerospace quality T1 high speed steel. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号