共查询到20条相似文献,搜索用时 15 毫秒
1.
《高科技纤维与应用》2005,30(2):54
本发明为一种车用启动超级电容器,超级电容器芯子由包裹隔膜的烧结式氧化镍正极片,连续化活性碳纤维布负极和集流支撑的薄镍片构成。电容芯子通过制作、焊接电流端子后,置于塑料壳体内,注入电解液,封口便得超级电容器成品。该超级电容器具有较高的功率密度和能量密度,且质量轻,成本低,寿命长,适合做各种类型车辆的启动能源,推广应用具有很好价值。 相似文献
2.
3.
4.
5.
超级电容器作为一种环保的新型储能装置,具有超高的功率密度,循环寿命长、工作温度区间大、经济环保等优势.MnO2作为常见的过渡金属氧化物,具有超高的理论电容、化学稳定性强、成本低、经济环保等特点,经常用作非对称超级电容的电极极材料.将MnO2与导电性能好的碳基材料组成,可以构建比容量大和循环稳定性强的复合材料.综述了近年... 相似文献
6.
非对称超级电容器(ASCs)是由两个不同的电极组成,因其可使器件的工作电压最大化,从而提高其能量密度,而备受关注.二氧化锰(MnO2)的理论比电容高、价格低、储量丰富和环境友好性等特征,是一种理想的超级电容器活性电极材料.本文综述了ASCs的组装原则及MnO2水系、固态非对称超级电容器的研究进展,并展望了提高MnO2基... 相似文献
7.
采用水热法制备了氧化镍/碳纳米管复合电极材料,用XRD和SEM测试了样品的结构和形貌,采用循环伏安法,恒电流充放电和交流阻抗测试了不同掺杂比例的复合材料的电化学性能。结果表明:碳纳米管的掺入增加了复合材料的比表面积和导电性。在1M KOH溶液中,氧化镍与碳纳米管的摩尔比(Ni2+:C)为1:1时,复合材料的电容性最好,达到了232Fg-1。比未掺杂碳纳米管的氧化镍基超级电容器体系比电容提高了4.14倍。其能量密度也明显提高,达到了4.03Wh kg-1。 相似文献
9.
过渡金属镍、钴资源广泛、价格低廉、环境友善,其氧化物和氢氧化物电化学性能良好,已成为优良的超级电容器电极材料。综述了在各类基底上三维生长的镍、钴基纳米材料在电化学超级电容器研究中的研究现状,并预测了未来电化学超级电容器的电极材料的研究方向。 相似文献
10.
11.
随着智能可穿戴设备的快速发展,对柔性能量储存设备提出了更高的要求.纤维状超级电容器具有柔性、轻质、功率密度高、循环寿命长、快速充放电的优势,在可穿戴领域展现出广泛的应用潜力.碳纳米管纤维、石墨烯纤维和碳纤维具有较高的电导率,可以满足超级电容器电导率的要求,被认为是理想的纤维状超级电容器的电极材料.主要综述了碳纳米管纤维、石墨烯纤维和碳纤维基超级电容器的制备方法、电化学性能和纤维状超级电容器的应用,重点介绍了一些国内外代表性的研究工作.最后分析了纤维状超级电容器研究中存在的问题,并对未来的研究方向和发展趋势进行了预测和展望. 相似文献
12.
超级电容器用无定形MnO2的制备及性能 总被引:1,自引:0,他引:1
采用液相氧化还原法制备了无定形态MnO2。通过XRD、SEM、循环伏安及恒电流充放电测试对产物的物理及电化学特性进行了研究。结果表明:200℃热处理后的材料仍保持无定形态,呈形貌规则的球形。以3 mol·L-1 KOH为电解液,充放电电流为200 mA·g-1,未热处理的材料50周期比电容达到332.1 F·g-1,但500周期容量保持率仅为57.5%。200℃热处理后的材料比电容稍有下降,50周期为231.2 F·g-1,但循环性能明显提高,500周期容量保持率高达97.9%,能够满足超级电容器的需要。 相似文献
13.
14.
15.
16.
17.
以苯酚和甲醛为原料,氢氧化钠为催化剂,采用两步碱催化合成工艺,制备了水溶性酚醛树脂前驱体。使前驱体在高温下炭化,制备出以介孔为主的活性炭。将活性炭在2.5 mol8226;L-1 HNO3溶液中进行活化后得到产品。所得产品的物理性质用红外光谱(IR)、扫描电镜(SEM)和比表面(BET)测试进行表征。结果显示活化后活性炭比表面积略有下降,平均孔径变宽,但因活化增加了活性炭含氧官能团的含量,使得活性炭表面有效比表面积增加。电化学测试结果表明活化后的活性炭电极比容量增加,达到250 F8226;g-1。 相似文献
18.
19.
以Ni(NO3)2为原料、NaOH为沉淀剂和羟基化碳纳米管(CNT)为基质首先制备了Ni(OH)2/CNT复合材料, 然后将其于一定温度下煅烧,使其转变为NiO/CNT复合材料。用X射线粉末衍射仪(XRD)、场发射电子显微镜(FESEM)和透射电子显微镜(TEM)表征了样品的晶相与形貌,结果表明NiO纳米粒子紧密锚附在碳纳米管表面。复合材料可能的形成机理被提出。采用循环伏安法(CV)、单电极充放电和电化学阻抗研究了反应条件对其电化学性能的影响,确定最佳制备条件。将复合材料正极、活性炭负极和PVA-KOH电解质膜组装成准固态不对称超级电容器,电化学性能测试结果表明,在充放电电流密度11.2mA/cm2下,其比电容达到868.0F/g并保持稳定循环3700圈。7500次循环后,其比电容值仍有564.2F/g,显示出高的比电容和长的循环稳定性。 相似文献