共查询到20条相似文献,搜索用时 0 毫秒
1.
CA Scudder AK Moschovakis AB Karabelas SM Highstein 《Canadian Metallurgical Quarterly》1996,76(1):332-352
1. The intra-axonal recording and horseradish peroxidase injection technique together with spontaneous eye movement monitoring has been employed in alert behaving monkeys to study the discharge pattern and axonal projections of mesencephalic saccade-related long-lead burst neurons (LLBNs). 2. Most of the recovered axons (N = 21) belonged to two classes of neurons. The majority (N = 13) were identified as efferents of the superior colliculus and had circumscribed movement fields typical of collicular saccade-related burst neurons. This discharge pattern, their responses to electrical stimulation of one or both superior colliculi, and their morphological appearance identified them as members of the T class of tectal efferent neurons. 3. Axons of these T cells deployed terminal fields within several saccade-related brain stem areas including the nucleus reticularis tegmenti pontis, which projects to the cerebellum; the nucleus reticularis pontis oralis and caudalis, which contains excitatory premotor burst neurons; the nucleus raphe interpositus, which contains omnipause neurons; the nucleus paragigantocellularis, which contains inhibitory premotor burst neurons, as well as other less differentiated parts of the brain stem reticular formation. 4. The other class of LLBNs (N = 4) had their somata in the medullary reticular formation just lateral to the interstitial nucleus of Cajal. They projected primarily to the raphe nuclei, the medullary reticular formation, and the paramedian reticular nucleus. Discharges were of the directional type with up ON directions (N = 3) and down ON directions (N = 1). 5. Other fibers, which project to pontine and medullary oculomotor structures but whose somata were not recovered (N = 4), illustrate that there are also other types of LLBNs that contribute to the generation and control of saccadic eye movements. 6. Our findings complement previous data about the axonal trajectories of T-type superior colliculus efferents. They also demonstrate the existence of LLBNs located in the mesencephalic reticular formation and their target areas in the brain stem. Implications of these findings for current concepts of oculomotor control are discussed. 相似文献
2.
Estimates of behavioral thresholds of infants are elevated relative to those of adults. Explanations for the differences include auditory sensory factors and non-sensory factors, but no direct estimates of the relative contributions of these two factors have been made. In this investigation, thresholds in quiet and in increasing levels of a masking noise for a 1 kHz tone, in infants 8 to 11 months old and in adults, were determined. The infant-adult differences in unmasked threshold was compared to the infant-adult difference in an estimate of the minimum masking level (MML) that was derived from the masking data. The intensity level of a masking noise at which masking begins is assumed to be independent of the non-sensory factors that impact on the threshold value itself. Therefore, it is reasoned that the infant-adult difference in MML reflects more closely differences in auditory sensory factors than does the infant-adult difference in unmasked threshold. In the region of 1 kHz, the infant-adult difference in behavioral threshold was 12 dB and the infant-adult difference in MML was 8 dB. Therefore, according to our assumptions, 8 dB of the infant-adult difference in unmasked threshold is accounted for by sensory factors and the remaining 4 dB must be attributable to non-sensory factors. 相似文献
3.
SS Grigorian OG Baklavadzhian SM Minasian TsI Adamian ES Gevorkian SG Sarkisian 《Canadian Metallurgical Quarterly》1997,83(11-12):49-56
Effects of single, double, and rhythmic stimulation upon hypothalamic neurons responding to the 1st excitatory phase of lateral vestibular nucleus stimulation, were studied. The data obtained show that activation of some hypothalamic neurons following stimulation of the lateral vestibular nucleus has a monosynaptic character. The findings suggest that ascending afferents from the lateral vestibular nucleus to the hypothalamus pass via oligo- as well as polysynaptic pathways. 相似文献
4.
Responses of the red nucleus (RN) neurones to cutaneous stimulation were studied in unanaesthetized chronic cats by means of microelectrode technique. It was revealed that the reactions were predominantly excitatory and the RN neurons had larger receptive fields covering one half of the body or all the limbs of the animal. The somatotopic principle of the cutaneous representation in RN was shown. The destruction of the cerebellar nuclei and sensorimotor cortex caused the lowering of the background activity of the RN neurones, changed their responses to cutaneous stimulation, as well as the narrowing and redistribution of the peripheral receptive fields. With all the changes described, the somatotopic character of the cutaneous representation in RN as preserved, though a large majority of RN neurones (52,8%) did not show this somatotopic distribution. The cerebellum is the main collector in transferring the cutaneous impulsation to the RN. In awake cats there were predominantly involved spinocerebellar pathways, activated by the flexor reflex afferents. The participation of the sensorimotor cortex in the reaction under study is revealed by the phenomenon of sprouting of the corticorubral axon terminals from the dendritic portions to the neuronal somata of RN. 相似文献
5.
The principal cells of the chick tangential nucleus are second-order sensory neurons that participate in the three-neuron vestibulo-ocular and vestibulocollic reflexes. In postnatal animals, second-order vestibular neurons fire repetitively on depolarization. Previous studies have shown that, although this is an important feature for normal reflex function, it is only acquired gradually during embryonic development. Whereas at 13 embryonic days (E13) the principal cells accommodate after firing a single spike, at E16 a few principal cells repetitively can fire multiple action potentials on depolarization. Finally, in the hatchling, the vast majority of principal cells is capable of nonaccommodating firing on depolarization. As a first step in understanding the mechanisms underlying developmental change in excitability of these second-order vestibular neurons, we analyzed the outward potassium currents and their role in accommodation, using brainstem slices at E16. The principal cells exhibited transient and sustained potassium currents, with both of these containing calcium-dependent components. Further, both high- and low-threshold sustained potassium currents have been distinguished. The low-threshold dendrotoxin-sensitive sustained potassium current (IDS) is associated with principal cells that accommodate and is not expressed in those that fire repetitively. Finally, blocking of IDS transforms accommodating cells into neurons capable of firing trains of action potentials on depolarization. These findings indicate that suppression of IDS during development is sufficient to transform accommodating principal cells into nonaccommodating firing neurons and suggests that developmental regulation of this current is necessary for the establishment of normal vestibular function. 相似文献
6.
7.
E Cafarelli 《Canadian Metallurgical Quarterly》1977,37(3):181-189
The relationships between some physical and physiological events, and perceived effort were studied at several equivalent work outputs (W) at two pedalling rates (30 and 60 rev-min-1). Subjects judged effort throughout a 4 min exercise bout. After 4 min at any W it was always more effortful to pedal at 30 rev-min-1 even though there were no differences in VE, VO2, or integrated electromyography per minute (IEMG-min-1) between pedalling rates. Effort was related to VO2 and IEMG-min-1 but it was more effortful to pedal at 30 rev-min-1. Effort was also related to pedal resistance and IEMG of single contractions but was influenced by pedalling rate after 4 min of exercise. At any resistance it was more effortful to pedal at 60 rev-min-1, however, when effort was plotted as a function of resistance after 15 s, there was virtually no effect of pedalling rate. The rate effect grows with time from the onset of exercise and appears to be related to the central signal to the effort sense. The interaction of peripheral and central signals suggests a model of the effort sense during exercise. 相似文献
8.
9.
U Jürgens 《Canadian Metallurgical Quarterly》1998,85(8):376-388
Squirrel monkey vocalization can be considered as a suitable model for the study in humans of the neurobiological basis of nonverbal emotional vocal utterances, such as laughing, crying, and groaning. Evaluation of electrical and chemical brain stimulation data, lesioning studies, single-neurone recordings, and neuroanatomical tracing work leads to the following conclusions: The periaqueductal gray and laterally bordering tegmentum of the midbrain represent a crucial area for the production of vocalization. This area collects the various vocalization-triggering stimuli, such as auditory, visual, and somatosensory input from diverse sensory-processing structures, motivation-controlling input from some limbic structures, and volitional impulses from the anterior cingulate cortex. Destruction of this area causes mutism. It is still under dispute whether the periaqueductal region harbors the vocal pattern generator or merely couples vocalization-triggering information to motor-coordinating structures further downward in the brainstem. The periaqueductal region is connected with the phonatory motoneuron pools indirectly via one or several interneurons. The nucleus retroambiguus represents a crucial relay station for the laryngeal and expiratory component of vocalization. The articulatory component reaches the orofacial motoneuron pools via the parvocellular reticular formation. Essential proprioceptive feedback from the larynx and lungs enter the vocal-controlling network via the solitary tract nucleus. 相似文献
10.
2 groups of squirrel monkeys with frontal or parietal cortical lesions and an unoperated control group (N = 12) received the following in the order mentioned: brightness discrimination; 3 forms of a spatial pattern discrimination in which the essential cue and site of reinforcement were separated (SSP); delayed response; form discrimination; and 3 forms of a spatial pattern discrimination in which the essential cue and site of reinforcement were identical. Ss with frontal lesions were impaired on delayed response, and those with parietal lesions were impaired on form and SSP discriminations. Neither group was impaired on brightness discrimination. Results confirm and extend previous findings that the posterior parietal cortex of nonhuman primates is critically involved in visually guided spatial discriminations when the primary cue and the site of reinforcement are separated. (46 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved) 相似文献
11.
181 vestibular nucleus neurons were examined for their responsiveness to rotation about the vertical axis and static tilts in roll and pitch planes in the rat. 68 of these units were sensitive to rotation and tilts (canal-otolith cells). In other words, 41.0% of the neurons responded to rotation (68/166). There was no significant difference in percentage of canal-otolith cells in type I and II neurons, which were 48.6% and 37.0% respectively. Vertical axis rotation when the head was tilted produced a simultaneous stimulation of the canal and otoliths. Using this stimulus method, the bias effect was observed in 72.5% of the canal-otolith cells (29/40). Furthermore, since vertical axis rotation with the head tilted elicited vertical canal responses, the rate of ampullary convergence was estimated by analysing response profiles obtained such rotations. The results obtained in the rat were compared with those in other species. 相似文献
12.
Spatial response properties of medial (MVST) and lateral (LVST) vestibulospinal tract neurons were studied in alert and decerebrate cats during sinusoidal angular rotations of the whole body in the horizontal and many vertical planes. Of 220 vestibulospinal neurons with activity modulated during 0.5-Hz sinusoidal rotations, 200 neurons exhibited response gains that varied as a cosine function of stimulus orientation and phases that were near head velocity for rotation planes far from the minimum response plane. A maximum activation direction vector (MAD), which represents the axis and direction of rotation that maximally excites the neuron, was calculated for these neurons. Spatial properties of secondary MVST neurons in alert and decerebrate animals were similar. The responses of 88 of 134 neurons (66%) could be accounted for by input from one semicircular canal pair. Of these, 84 had responses consistent with excitation from the ipsilateral canal of the pair (13 horizontal, 27 anterior, 44 posterior) and 4 with excitation from the contralateral horizontal canal. The responses of the remaining 46 (34%) neurons suggested convergent inputs. The activity of 38 of these was significantly modulated by both horizontal and vertical rotations. Twelve neurons (9%) had responses that were consistent with input from both vertical canal pairs, including 9 cells with MADs near the roll axis. Thirty-two secondary MVST neurons (24%) had type II yaw and/or roll responses. The spatial response properties of 18 secondary LVST neurons, all studied in decerebrate animals, were different from those of secondary MVST neurons. Sixteen neurons (89%) had type II yaw and/or roll responses, and 12 (67%) appeared to receive convergent canal pair input. Convergent input was more common on higher-order vestibulospinal neurons than on secondary neurons. These results suggest that MVST and LVST neurons and previously reported vestibulo-ocular neurons transmit functionally different signals. LVST neurons, particularly those with MADs close to the roll axis, may be involved in the vestibular-limb reflex. The combination of vertical and ipsilateral horizontal canal input on many secondary MVST neurons suggests a contribution to the vestibulocollic reflex. However, in contrast to most neck muscles, very few neurons had maximum vertical responses near pitch. 相似文献
13.
Because primate studies provide data for the current experimental models of the human oculomotor system, we investigated the relationship of lateral rectus muscle motoneuron firing to muscle unit contractile characteristics in the squirrel monkey. Also examined was the correlation of whole-muscle contractile force with the degree of evoked eye displacement. A force transducer was used to record lateral rectus whole-muscle or muscle unit contraction in response to abducens whole-nerve stimulation or stimulation of single abducens motoneurons or axons. Horizontal eye displacement was recorded using a magnetic search coil. (1) Motor units could be categorized based on contraction speed (fusion frequency) and fatigue. (2) The kt value (change in motoneuronal firing necessary to increase motor unit force by 1.0 mg) of the units correlated with maximum tetanic tension. (3) There was some tendency for maximum tetanic tension of this unit population to separate into three groups. (4) At a constant frequency of 100 Hz, 95% of the motor units demonstrated significantly different force levels dependent on immediately previous stimulation history (hysteresis). (5) A mean force change of 0.32 gm/ degrees and a mean frequency change of 4.7 Hz/ degrees of eye displacement were observed in response to whole-nerve stimulation. These quantitative data provide the first contractile measures of primate extraocular motor units. Models of eye movement dynamics may need to consider the nonlinear transformations observed between stimulation rate and muscle tension as well as the probability that as few as two to three motor units can deviate the eye 1 degrees. 相似文献
14.
Assessed the effect of light vs. dark and noise vs. quiet on delayed-response performance in 1 male and 3 female squirrel and 4 male owl monkeys. Squirrel monkeys performed better in the dark than in the light, while owl monkeys performed better in the light than in the dark. Both species made more errors in noise than in quiet. Response latencies were slower under dark conditions for squirrel monkeys and under light conditions for owl monkeys. (PsycINFO Database Record (c) 2010 APA, all rights reserved) 相似文献
15.
The focus of the presentation will review the distribution of nitric oxide (NO)-producing sites in the digestive system in mammals and nonmammalian vertebrates and will center on the roles that NO plays in modulating physiological and pathophysiological functions in digestive system. 相似文献
16.
Two main subclasses of ionotropic receptors for excitatory amino acids (EAAs), N-methyl-D-aspartate (NMDA) receptors and non-NMDA receptors, are involved in neurotransmission in the cortex of mammals. To examine whether EAAs are transmitters at the cortical taste area (CTA) in rats and to elucidate which types of the two ionotropic receptors operate at these synapses, we studied the effects of microiontophoretic administration of EAA antagonists on the responses of 64 taste cortical neurons to four basic taste stimuli in urethane-anesthetized rats. Both D-2-amino-5-phosphonovalerate (APV), a selective antagonist for NMDA receptors, and 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX), a selective antagonist for non-NMDA receptors, suppressed most of the taste responses. The percentage of neurons suppressed by APV (70.3%) was almost the same as that suppressed by CNQX (64.1%). These suppressive effects were independent of the effects of background discharges during the prestimulus, water-rinsing period. The percentage of neurons suppressed by the antagonists did not differ between any pairs of taste stimuli. The number of neurons possessing both receptors was larger in the granular insular area (area GI), one of the two CTAs, than in the dysgranular insular area (area DI). In addition, taste responses were suppressed by CNQX or by both APV and CNQX in area GI in a significantly larger number of layer V neurons than in area DI. The present results indicate that normal excitatory transmission of taste afferents in the CTA in rats was mediated by both NMDA and non-NMDA receptors. The finding that a large fraction of neurons in the CTA in rats mediated taste information through NMDA receptors in normal transmission might be related to the higher potency of the plasticity observed in the CTA. 相似文献
17.
K Hikosaka 《Canadian Metallurgical Quarterly》1997,89(1-2):275-283
Using anesthetized and immobilized monkeys, responses of neurons in the posterior inferotemporal cortex to visual patterns were examined. Response properties were compared between the sulcus and the gyrus, extending between the anterior tip of the posterior middle temporal sulcus and the inferior occipital sulcus. Of 682 neurons tested, 37% in the sulcus (134/365) and 36% in the gyrus (113/317) responded to one or more patterns. The preference of neurons for patterns varied from neuron to neuron; some neurons responded selectively to one particular pattern, whereas others responded to two or more patterns. To evaluate response properties of neurons, two indices were calculated (the pattern preference index and the pattern selectivity index). The distributions of these indices in the sulcus did not differ significantly from those of the gyrus. Furthermore, the relationship between the pattern preference index and the pattern selectivity index for each neuron was almost the same in these two portions; most neurons responding to a small number of patterns showed inhibitory or weak responses to the worst pattern. In both portions, most neurons had receptive fields with small eccentricities and receptive field sizes were almost the same. These results suggest that the cortex in the sulcus in the posterior inferotemporal cortex is involved in the detection of features of visual patterns, similarly to the cortex in the gyrus. 相似文献
18.
EB Klerman Z Boulos DM Edgar RE Mistlberger MC Moore-Ede 《Canadian Metallurgical Quarterly》1999,22(1):45-59
A series of sleep deprivation (SD) experiments were performed to examine the relative influence of circadian and homeostatic factors on the timing of sleep in squirrel monkeys free-running in constant illumination. All SDs started at the beginning of subjective night and lasted 0, 1/4, 1/2, 1, 1 1/4, or 1 1/2 circadian cycles. These six lengths represented three pairs: (0.1), (1/4, 1 1/4), (1/2, 1 1/2). Within each pair, SD ended at the same circadian phase but differed by one circadian cycle in duration. Both before and after SD, consolidated sleep (CS) episodes occurred predominantly during subjective night, even after long SDs ending at the beginning of subjective day. CS duration was strongly influenced by circadian phase but had no overall correlation with prior wake duration. Sleep loss incurred during SDs longer than 1/4 cycle was only partially recovered over the next two circadian cycles, though total sleep duration was closer to baseline levels after the second circadian cycle after SD. There was a trend toward a positive correlation between prior wake duration and the amount of NREM and delta activity measures during subjective day. Delta activity was not increased in the first 2 hours of CS after the SD. Relatively high levels of delta activity occurred immediately after the SD ended and again at the time of baseline CS onset. These data indicate that the amount of sleep and delta activity after SD in squirrel monkeys is weakly dependent on prior wake duration. Circadian factors appear to dominate homeostatic processes in determining the timing, duration and content of sleep in these diurnal primates. 相似文献
19.
CJ Snider C Dehay M Berland H Kennedy LM Chalupa 《Canadian Metallurgical Quarterly》1999,19(1):220-228
In the fetal monkey the projections from the two eyes are initially completely intermingled within the dorsal lateral geniculate nucleus (DLGN) before separating into eye-specific layers (). To assess the cellular basis of this developmental process, we examined the morphological properties of individual retinogeniculate axons in prenatal monkeys of known gestational ages. The period studied spanned the time from when binocular overlap has been reported to be maximum, circa embryonic (E) day 77 through E112, when the segregation process is already largely completed in the caudal portion of the nucleus. Retinogeniculate fibers were labeled by making small deposits of DiI crystals into the fixed optic tract. After adequate time was allowed for diffusion of the tracer, fibers were visualized by confocal microscopy, and morphometric measures were made from photomontages. This revealed that retinogeniculate fibers in the embryonic monkey undergo continuous growth and elaboration during binocular overlap and subsequent segregation. Importantly, very few side-branches were found along the preterminal axon throughout the developmental period studied. Thus, restructuring of retinogeniculate fibers does not underlie the formation of eye-restricted projections in the primate. Rather, the results support the hypothesis that binocular segregation in the embryonic monkey is caused by the loss of retinal fibers that initially innervate inappropriate territories (). 相似文献
20.
1. Complex spikes of cerebellar Purkinje cells recorded from awake, behaving monkeys were studied to determine the extent to which their discharge could be quantified as periodic. Three Rhesus monkeys were trained to perform up to five different tasks involving rotation of the wrist in relation to a visual cue. Complex spike activity was recorded during task performance and intertrial time. Interspike intervals were determined from the discharge of each of 89 Purkinje cells located throughout lobules IV, V, and VI. Autocorrelation and Fourier transform of the autocorrelation function were performed on the data. In addition, the activity from one cell was transformed so that the discharge occurred on the beat of a 10-Hz clock, and in a further transformation, on the beat of a noisy 10-Hz clock. These transformed data were then analyzed as described above. 2. Fourier transform of the autocorrelogram function of the data that had been transformed to a 10-Hz clock, and that of the noisy 10-Hz clock, both showed a prominent peak at 10 Hz. However, the autocorrelograms and the Fourier transforms of the autocorrelogram functions failed to reveal a prominent periodicity for the actual discharge of any of cells, at any frequency up to 100 Hz: the discharge appeared random with respect to the interspike interval. The discharge was not random with respect to behavior. Complex spike activity was commonly time locked to the start of wrist movement. We examined this discharge to see whether oscillatory discharge could be seen after alignment of the data on the start of wrist movement, or after alignment of the data on the complex spike occurring peri-start of wrist movement. No oscillation was seen for either alignment. 3. The inferior olive, which sends its climbing fibers to the cerebellum, has been implicated in such different activities as 1) pathological tremor of the soft palate, 2) physiological tremor, 3) the normal initiation of all bodily movement, and 4) motor learning. Previous work in pharmacologically or surgically treated animals has shown that, under some conditions, the discharge of these neurons is periodic and synchronous. This firing pattern has been interpreted to support a role in the first two activities. But measurements reported here in the awake monkey show just the opposite: the discharge is aperiodic to the extent of being random. As such, the inferior olive cannot be a "motor clock" in the general role that has been proposed.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献