共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
我国传统LBP人脸识别技术只是针对局部信息进行识别而忽略全局信息,在特殊环境中,当人脸受到光线、背景变化等原因而造成模糊现象时,只采用局部识别会导致识别效率和准确度降低。对此,文章提出一种基于LBP特征集成学习的人脸识别算法C-MB-LBP,该算法主要是将人体的脸部图像进行分块并得出LBP特征,根据中心像素以及分块的灰度值进行计算,得到新的LBP特征,最后再利用近邻分类器对其特征进行识别,从而识别人脸。实验结果表明,文章所提算法对于人脸识别不再仅限于局部的识别,更注重全局识别,使人脸识别效率显著提高,识别时间大大降低。 相似文献
3.
相较于指纹识别、虹膜识别、声纹识别,人脸识别具有自然、便捷、体验友好的特征,成为大多数人认可的生物识别技术。近年来,随着GPU技术的成熟和数据集规模越来越大,让人脸识别技术的关注方向从基于手工特征的传统方法和传统的机器学习技术转移到使用大数据集训练的深度神经网络。现在,基于深度学习的人脸识别技术在人证比对、实名认证、人机交互、考勤、安防、美颜、趣味拍照、直播、微动作识别(疲劳驾驶、课堂听讲、罪犯审判)等领域得到了广泛的关注。文章首先简述人脸识别的发展历程,之后从深度学习方法、人脸数据集、网络结构、损失函数这四个方面,对目前流行的基于深度学习方法的人脸识别技术做一个较为详细的综述。 相似文献
4.
5.
《电子技术与软件工程》2019,(10)
本文设计描述了三种人脸识别技术:(1)通过肤色模型训练的图像变化技术对图像的人脸区域进行识别并分割出来。(2)Eigenface人脸识别算法的图像表示技术通过输入已知人脸图片,可视化特征脸,与系统相似脸匹配并计算识别准确率。(3)全连接神经网络技术和卷积神经网络技术实现对对输入人脸的识别分析和匹配测试,从系统库里找到与之最相近的的脸,并可视化展示。 相似文献
6.
7.
为优化手写签名识别算法性能,提出了一种局部二值模式(LBP)和深度学习相结合的手写签名识别算法.针对签名图像进行预处理、维纳滤波去除噪声;将预处理签名图像分为3×4子块,LBP应用于分块后的每个子图像,并将每个子块的纹理直方图特征连接起来,形成全局直方图特征;将得到的特征向量作为深度信念网络(DBN)的输入,逐层训练网络,并在顶层形成分类面,对签名图片进行识别.基于GPDS、MCYT及原创数据库进行实验,识别率误差分别为5.S5%、9.3%、1.17%,有效提高了手写签名的识别精度,符合实际应用的要求. 相似文献
8.
传统的LBP算子只利用了局部的信息,而忽略了全局信息。MB_LBP算子虽然充分考虑了全局信息,但对局部信息的表示不足。在此提出一种改进后的LBP特征的人脸识别方法,改进后的LBP算子不仅能够利用局部特征,同时也兼顾了全局信息。该方法首先将人脸图像分块,对于每个分块,计算LBP特征,对于得到的LBP特征,根据其中心像素和分块灰度均值关系重新进行计算得到改进后的LBP特征,最后采用最近邻分类器进行识别。在ORL和YALE标准人脸数据库上的实验表明,改进后的识别效果优于使用传统LBP算子和MB_LBP算子。采用改进后的LBP算子,能够明显提高识别率,在ORL和YALE的实验显示能提高3%~8%左右的识别率。 相似文献
9.
作为非接触式生物识别方法之一,人脸识别在诸多情况下被广泛使用。然而,传统的人脸识别方法由于识别准确度低以及在多个场合的应用受到限制,已不能满足目前的需求。文中提出了采用深度学习的方法来实现脸部标志检测和无限制人脸识别。为解决人脸标志检测问题,使用一种深层卷积神经网络的逐层训练方法,以帮助卷积神经网络进行收敛,并提出了一种避免过拟合的样本变换方法;为了解决人脸识别问题,文中提出了一种SIAMESE卷积神经网络,其在不同部位和尺度上进行训练。实验测试显示,ORL和人脸识别算法的精度分别达到了91%和81%。 相似文献
10.
人脸识别技术是通过脸部图片来验证身份信息的一项身份验证技术,相比于其他身份识别技术有着应用范围广泛、便利等优势.然而人脸识别算法在复杂光照场景下的识别率仍然不高,针对这一问题,提出自适应LBP算法,即用图像块的自身的信息熵和亮度信息对图像块进行自适应加权,并通过实验证明算法提高了人脸识别率. 相似文献
11.
12.
Radio signal recognition based on image deep learning 总被引:1,自引:0,他引:1
A technical idea was innovatively proposed that uses image deep learning to solve the problem of radio signal recognition.First,the radio signal was transformed into a two-dimensional picture,and the radio signal recognition problem was transformed into the object detection problem in the field of image recognition.Then,the advanced achievements about image recognition were used to improve the intelligence and ability of radio signal recognition in complex electromagnetic environment.Based on the proposed idea,a novel radio signal recognition algorithm named RadioImageDet was proposed.The experimental results show that the algorithm can effectively identify the waveform types and time/frequency coordinates of radio signals.After training and testing on the self-collected data set with 12 types and 4 740 samples,the accuracy reaches 86.04% and the mAP value reaches 77.72,while the detection time is only 33 ms on the medium configured desktop computer. 相似文献
13.
针对光照、姿态和表情对人脸识别率造成严重影响的问题,提出了结合笛卡儿微分不变量(CDI,cartesian differential invariant)和LBP(local binary patterns)的人脸特征抽取与识别算法。首先,利用高斯微分算子抽取人脸图像的微分结构,组合这些微分结构得到一个不可约简的笛卡儿CDI集。其次,对CDI集中每个分量分别计算其LBP特征,并将所有分量的LBP特征连接起来以得到人脸图像的特征。最后,运用所抽取出的人脸局部描述特征和支持向量机(SVM)分类器完成人脸图像分类与识别。试验分析表明,基于CDI的LBP特征对人脸位置、姿态、光照和表情的变化具有较高的不变性。该算法在ORL和Yale人脸库中分别取得了98.5%和98.89%的识别率。 相似文献
14.
针对人脸识别中的遮挡和姿态偏转等问题,提出了一种基于分块LBP和鲁棒核编码(Robust Kernel Coding,RKC)的人脸识别算法,简称LBP-RKC算法.该算法首先对人脸图像进行多级分块的LBP特征提取,得到图像的每一块统计直方图特征.然后,将特征投影到核空间中,在核空间中建立一个鲁棒的回归模型来处理图像中的异常值,并利用迭代重加权算法求解该模型.最后,计算测试样本的每一块核表示重构残差并进行分类识别.实验表明,提出的LBP-RKC算法在处理遮挡、姿态偏转等人脸问题时能取得很好的识别效果,同时算法效率较高. 相似文献
15.
提出了基于LBP算子与EMD的人脸识别算法.该方法先通过图像预处理,把光照变化控制在一定范围内,然后提取图像的局部LBP特征,获得图像的LBP直方图.EMD可以准确地计算直方图的距离,因此本文采用EMD方法对LBP直方图进行计算,完成对图像相似性的度量.在GTAV人脸库上的实验结果表明,本文算法对光照变化和噪声更加鲁棒,EMD测度方法比X2测度方法具有更高的识别率. 相似文献
16.
近年来,很多高质量的数据集支撑了深度学习在计算机视觉、语音和自然语言处理领域的快速发展.但在电磁信号识别领域仍缺乏高质量的数据集,为促进深度学习在电磁信号识别中的应用,本文基于广播式自动相关监视(ADS-B)建立了一个大规模的真实电磁信号数据集.首先设计了一个自动数据收集和标注系统,在开放和真实的场景中自动捕获ADS-... 相似文献
17.
针对复杂电磁环境下辐射源识别率低的问题,提出基于对角切片特征和深度学习的辐射源识别算法。利用辐射源信号双谱的个体特性,提取信号双谱对角切片特征作为深度学习模型的输入数据,采用Softmax分类器进行辐射源识别。仿真实验利用两部同型辐射源进行测试,结果表明该算法能识别个体辐射源,在低信噪比条件下也能获得高的辐射源识别率;相比于其他识别算法,双谱对角切片特征有更鲁棒的分辨性。 相似文献
18.
近年来,自动学习特征的深度学习方法在视频行为识别领域中不断被挖掘探索。在总结了常用的行为识别数据集的基础上,对传统的行为识别方法以及深度学习的相关基础原理进行了概述,着重对基于不同输入内容与不同深度网络的行为识别方法进行了较为全面、系统性的总结、对比与分析。最后,对深度学习在行为识别领域的发展做了总结并展望了未来的发展趋势。 相似文献