首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were designed to determine whether a heterogeneity of endothelium-dependent relaxations in arteries from different vascular beds exists in experimental congestive heart failure (CHF) and to determine the mediators of those responses. CHF was produced in dogs by rapid ventricular pacing for 15 d. Rings of coronary, femoral, and renal arteries with and without endothelium from control and CHF dogs were suspended in organ chambers for measurement of isometric force. In arteries contracted with prostaglandin F2 alpha, endothelium-dependent relaxations to BHT 920 (an alpha 2-adrenergic agonist) were increased in coronary arteries from dogs with CHF (maximal relaxation: control -15 +/- 9% vs CHF -92 +/- 5%; n = 5-6; P < 0.05), with a modest enhancement in renal arteries. Relaxations to adenosine diphosphate and the calcium ionophore were unchanged. Relaxations to BHT 920 in CHF were reduced by NG monomethyl-L-arginine (L-NMMA) and pertussis toxin but not by indomethacin. These data suggest that endothelium-dependent relaxations are affected heterogeneously in CHF. The enhanced response to alpha 2-adrenergic agonists in the coronary artery is mediated by nitric oxide through a mechanism sensitive to inhibition by pertussis toxin. This selective increase in endothelium-dependent relaxations in the coronary artery may contribute to preserving coronary blood flow during CHF.  相似文献   

2.
The endothelium contributes to the regulation of vascular tone by producing nitric oxide (NO) and the endothelium-derived hyperpolarising factor (EDHF). In hypercholesterolemia, endothelium-dependent relaxation is impaired but can be restored by treatment with lovastatin (LOVAS). We investigated the effects of LOVAS on NO and EDHF-mediated relaxation. Rabbits were fed 1% cholesterol diet for 4 weeks and 0.5%) cholesterol for the following 12 weeks (CHOL-group). The LOVAS group additionally received 10 mg of lovastatin over the last 12-week period. Experiments were performed in carotid artery rings. Relaxant responses to acetylcholine (ACh) were recorded in the presence of indomethacin. Nitro-L-arginine (NOARG, 100 microM) and potassium chloride (KCl, 35 mM) were used to differentiate between NO- and EDHF-mediated relaxations. Cholesterol impaired ACh-induced relaxations and this effect was prevented by LOVAS (control 100+/-1%, CHOL 81+/-6%, LOVAS 98+/-1%). In the presence of NOARG, relaxations to ACh were not different between the LOVAS and CHOL groups (control 78+/-4%, CHOL 64+/-6%, LOVAS 64+/-5%). When KCl was used, ACh-induced relaxations were similar in the LOVAS and control group (control 75+/-5%, CHOL 49+/-6%, LOVAS 76+/-2%). In arteries treated with NOARG and KCl together, no relaxations were observed. Relaxations of arteries from the control group were not affected by 18 h preincubation with lovastatin (10 microM). Lovastatin selectively maintains nitric oxide-mediated endothelium-dependent relaxation in hypercholesterolemic rabbit carotid arteries.  相似文献   

3.
OBJECTIVES: The purpose of this study was to investigate whether therapy with nitroglycerin (GTN) would lead to abnormal coronary artery responses to the endothelium-dependent vasodilator acetylcholine. BACKGROUND: Nitroglycerin therapy is associated with specific biochemical changes in the vasculature that may lead to increased vascular sensitivity to vasoconstrictors. METHODS: Patients were randomized to continuous transdermal GTN, 0.6 mg/h (n = 8), or no therapy (n = 7), for 5 days prior to a diagnostic catheterization. Patients had similar risk factors for endothelial dysfunction. Quantitative angiography was performed in the morning to measure the mean luminal diameter of the left anterior descending coronary artery (LAD) in response to intracoronary acetylcholine (peak concentration, 10(-4) mol/liter). The transdermal preparation was removed from the GTN group, and 3 h later experimental procedures were repeated. RESULTS: In the morning, the GTN group experienced greater coronary constriction in response to acetylcholine infusion than those not receiving GTN (-19.6+/-4.2 vs. -3.8+/-3.0%; p = 0.01). Three hours later, the GTN group continued to display greater constriction to acetylcholine (-24.1+/-5.9%) as compared to the non-GTN group (-1.8+/-4.8%). When the morning and afternoon responses to acetylcholine were compared, the increase in coronary constriction in the GTN group was greater than the change observed in the non-GTN group (p < 0.05). CONCLUSIONS: This study demonstrates that therapy with GTN causes abnormal coronary vasomotor responses to the endothelium-dependent vasodilator acetylcholine, changes that were persistent for up to 3 hours after GTN discontinuation. This nitrate-associated vasomotor dysfunction has implications with respect to the development of nitrate tolerance and the potential for adverse events during nitrate withdrawal.  相似文献   

4.
BACKGROUND: Acetylcholine produces coronary artery (CA) constriction in diabetic patients, suggesting an impairment of endothelium-dependent dilation. In diabetes, multiple metabolic abnormalities may inactivate nitric oxide through oxygen free radical production. METHODS AND RESULTS: To examine the mechanism of this abnormal response, two physiological tests (ie, a cold pressor test [CPT] and coronary flow increase induced by an injection of 10 mg papaverine [PAP] in the distal left anterior descending CA) were performed before and after either intravenous L-arginine (625 mg/min x 10 minutes) or intravenous deferoxamine (50 mg/min x 10 minutes) in 22 normotensive nonsmoking diabetic patients with angiographically normal CAs and normal cholesterol. Coronary surface areas were measured with quantitative angiography. Before the administration of L-arginine or deferoxamine, CPT induced CA constriction in both groups (-14 +/- 10% and -15 +/- 11%, respectively; each P<.001), and PAP injection in distal LAD did not modify significantly proximal LAD dimensions. In the 10 diabetic patients receiving L-arginine, responses to CPT and PAP were not modified. Conversely, in the 12 patients receiving deferoxamine, CA dilated in response to the two tests (+10 +/- 9% after CPT and +22 +/- 7% after PAP, each P<.001). Intracoronary isosorbide dinitrate, an endothelium-independent dilator, produced similar dilation in the two groups (+47 +/- 19% and +41 +/- 15%, respectively; each P<.001). CONCLUSIONS: This study shows that (1) responses of angiographically normal CAs to CPT and to flow increase are impaired in diabetic patients; (2) abnormal responses are not improved by L-arginine, suggesting that a deficit in substrate for nitric oxide synthesis is not involved; and (3) deferoxamine restores a vasodilator response to the two tests, suggesting that inactivation of NO by oxygen species might be partly responsible for the impairment of CA dilation in diabetic patients.  相似文献   

5.
Abnormalities of vasomotor tone are characteristic of heart failure. This study was designed to assess the effects of chronic heart failure on endothelium-dependent relaxation in both large conduit arteries and small resistance vessels and to determine whether or not impaired nitric oxide (NO) production is involved. Segments of pulmonary artery (PA), abdominal aorta (AA), and small mesenteric artery (MA) were harvested from rats with heart failure resulting from coronary artery ligation and from sham-operated controls. Organ-bath experiments done in the presence of indomethacin to avoid the influence of vasodilatory prostanoids demonstrated that relaxation to acetylcholine (ACh) was impaired in the PA but not the AA or MA of the group with heart failure. Endothelium-independent relaxation to nitroglycerin was not significantly affected by the development of heart failure. Constriction to prostaglandin (PG) F(2alpha) was enhanced in PA but not in AA or MA segments. Preincubation with N(omega)-nitro-L-arginine (NNA) to inhibit the production of NO increased baseline force in vessels from all three beds, but the effect was greatest in the PA. Although relaxation to ACh was significantly diminished by NNA in the PA, it was not completely abolished. Furthermore, ACh-mediated relaxation in the presence of NAA was still impaired in the group with heart failure compared with the sham-operated control group. NNA had only mild effects on ACh-mediated relaxation in MA. These results demonstrate that (a) the mediators of endothelium-dependent relaxation may vary throughout the arterial circulation, (b) the contribution of NO to endothelium-dependent relaxation is substantial in PA and minimal in mesenteric resistance vessels, (c) endothelium-dependent relaxation is not uniformly impaired throughout the arterial bed by the development of heart failure, and (d) although a defect in NO production may account for enchanced vasoconstriction seen in response to PGF(2alpha), it does not account for the diminished vasodilatory response to ACh in this experimental model of heart failure.  相似文献   

6.
Recent evidence suggests that sulfhydryl species can react with oxides of nitrogen under physiologic conditions and thereby stabilize endothelium-derived relaxing factor (EDRF) activity, but the presence of a specific in vivo thiol carrier for nitric oxide (NO) remains controversial. The single free sulfhydryl of serum albumin is the most abundant thiol species in plasma (approximately 0.5 mM) and is particularly reactive towards NO. To examine the potential role of serum albumin in endogenous nitric oxide metabolism, we synthesized S-nitroso-BSA (S-NO-BSA), a model S-nitroso-protein, and examined its effects on platelet function and coronary and systemic vascular tone in 16 mongrel dogs. Intravenous bolus S-NO-BSA markedly reduced mean arterial pressure in a dose-dependent manner and proved seven and a half-fold less potent than intravenous nitroglycerin and 10-fold less potent than intravenous S-nitroso-cysteine (half-maximal response of 75 nmol/kg compared to 10 and 7.5 nmol/kg, respectively; P < 0.05); when given by intravenous infusion (half-maximal response = 10 nmol/kg per min), however, S-NO-BSA and nitroglycerin were equipotent. Intravenous bolus S-NO-BSA had a greater duration of action than either nitroglycerin or S-nitroso-cysteine and produced marked prolongation of the template bleeding time associated with dose-dependent inhibition of ex vivo platelet aggregation (half-maximal response approximately 70 nmol/kg). Intracoronary S-NO-BSA increased coronary blood flow (mean +/- SEM) less effectively than nitroprusside, acetylcholine, or S-nitroso-cysteine (165% +/- 24% vs. 315% +/- 82%, 483% +/- 55%, or 475% +/- 66%, respectively; P < 0.05) although with much longer duration of action. On a molar basis, S-nitroso-cysteine proved more effective than S-nitroso-BSA, nitroprusside, or acetylcholine as an epicardial coronary vasodilator. Thus, serum albumin reacts with oxides of nitrogen to form a stable S-nitroso-thiol with properties reminiscent of authentic EDRF supporting the view that protein associated thiol may participate in the action and metabolism of EDRF.  相似文献   

7.
BACKGROUND: The purpose of this study was to test the hypothesis that vasodilator responses of porcine coronary resistance arteries are increased by exercise training. METHODS AND RESULTS: Yucatan miniature swine were randomly divided into groups of exercise-trained (ET) and sedentary (SED) control pigs. ET pigs were placed on a progressive treadmill training program lasting 16 to 20 weeks, and SED pigs remained inactive during the same time period. Coronary resistance arteries 64 to 157 microns in diameter were isolated for in vitro evaluation of relaxation responses to the endothelium-independent dilators sodium nitroprusside (1 x 10(-10) to 1 x 10(-4) mol/L) and adenosine (1 x 10(-10) to 1 x 10(-5) mol/L) and to bradykinin (1 x 10(-13) to 3 x 10(-7) mol/L), an endothelium-dependent agent. Relaxation responses to adenosine and sodium nitroprusside were not altered by exercise training. Endothelium-dependent relaxation to bradykinin was enhanced in coronary resistance arteries from ET pigs (IC50: ET, 0.07 +/- 0.02 nmol/L; SED, 1.59 +/- 0.09 nmol/L). To determine whether prostanoids and/or the nitric oxide synthase pathway were involved in the ET-induced changes in bradykinin-induced vasodilation, responses to bradykinin were examined in coronary resistance arteries from both ET and SED pigs in the presence of indomethacin and in the presence of nitro-monomethyl L-arginine (L-NMMA). Both indomethacin and L-NMMA produced significant inhibition of the bradykinin-induced relaxation in vessels from both groups. Despite decreased bradykinin-induced relaxation after indomethacin, bradykinin-induced vasodilation was still enhanced in vessels from the ET group. L-NMMA caused greater inhibition of the bradykinin-induced relaxation in coronary resistance arteries from ET pigs relative to arteries from SED pigs and eliminated the training-induced enhancement of the bradykinin responses. CONCLUSIONS: These results suggest that exercise training enhances bradykinin-induced vasodilation through increased endothelium-derived relaxing factor/nitric oxide production by the L-arginine/nitric oxide synthase pathway.  相似文献   

8.
OBJECTIVE: Unmodified reperfusion without cardioplegia in minimally invasive direct coronary artery bypass grafting procedures causes endothelial dysfunction that may predispose to polymorphonuclear neutrophil-mediated myocardial injury. This study tested the hypothesis that ischemic preconditioning in a minimally invasive direct coronary artery bypass grafting model attenuates postischemic endothelial dysfunction in coronary vessels. METHODS: In anesthetized dogs, the left anterior descending coronary artery was occluded for 30 minutes and reperfused for 3 hours without ischemic preconditioning (no-ischemic preconditioning; n = 7); in 7 dogs, the left anterior descending occlusion was preceded by 5 minutes occlusion followed by 5 minutes of reperfusion. Relaxation responses to stimulators of nitric oxide synthase were used to evaluate endothelial function in arteries from the ischemic-reperfused (left anterior descending) and nonischemic (left circumflex coronary artery) zones. RESULTS: Stimulated endothelial-dependent relaxation of epicardial left anterior descending artery to incremental concentrations of acetylcholine in the no-ischemic preconditioning animals was shifted to the right, and maximal relaxation was attenuated compared with the nonischemic left circumflex coronary artery (117% +/- 4% vs 138% +/- 5%). In contrast, acetylcholine-induced maximal relaxation was comparable in the left anterior descending artery versus left circumflex coronary artery in the ischemic preconditioning group (130% +/- 6% vs 135% +/- 5%). In 150- to 200- microm left anterior descending microvessels, 50% relaxation occurred with a lower concentration (log[M]) of acetylcholine in ischemic preconditioning versus no-ischemic preconditioning (-8.0 +/- 0.4 vs -7.0 +/- 0.1) with no group differences in smooth muscle relaxation to sodium nitroprusside, suggesting endothelial-specific damage. Adherence of fluorescent labeled polymorphonuclear neutrophils to epicardial coronary artery endothelium, used as an index of basal (unstimulated) anti-polymorphonuclear neutrophil function, was significantly attenuated by ischemic preconditioning versus no-ischemic preconditioning (293 +/- 25 polymorphonuclear neutrophils/mm2 vs 528 +/- 29 polymorphonuclear neutrophils/mm2). CONCLUSION: In this minimally invasive direct coronary artery bypass grafting model, both agonist-stimulated and basal postischemic endothelial dysfunction were attenuated by ischemic preconditioning.  相似文献   

9.
BACKGROUND: Little information exists regarding development of vasomotor control mechanisms during coronary collateral artery maturation. Therefore, we studied endothelium-dependent relaxation of canine collateral arteries isolated 2, 4, and 9 months after placement of an ameroid occluder around the proximal left circumflex coronary artery. RESULTS: Collateral arteries isolated after 2 months exhibited markedly reduced endothelium-dependent relaxation in response to acetylcholine (ACh; 10(-10) to 10(-4) mol/L) and bradykinin (BK; 10(-11) to 10(-6) mol/L) compared with relaxation of noncollateral coronary arteries (P<0.01). In contrast, endothelium-independent relaxation of collateral arteries to nitroprusside was only slightly reduced compared with relaxation of noncollateral arteries (P<0.05). Endothelium-dependent relaxation of collateral arteries isolated after 4 and 9 months was increased significantly, to the extent that relaxation to ACh and BK was not significantly different between collateral and noncollateral arteries at these periods. Inhibition of nitric oxide synthesis with NT-nitro-L-arginine methyl ester (L-NAME; 100 micromol/L) markedly inhibited ACh-induced relaxation in all noncollateral arteries and in collateral arteries isolated after 9 months. However, neither L-NAME nor indomethacin (5 micromol/L) alone inhibited ACh-mediated relaxation of collateral arteries isolated after 4 months. ACh-induced relaxation of these collateral arteries was only inhibited when arteries were preconstricted with 30 mmol/L K+ and pretreated with L-NAME and indomethacin (ie, when synthesis/effects of nitric oxide, prostaglandins, and endothelium-derived hyperpolarizing factor were inhibited). CONCLUSIONS: Development of endothelium-dependent relaxation in canine coronary collateral arteries is not complete after 2 months. After 4 months, endothelium-dependent relaxation of collateral arteries is similar to relaxation of noncollateral arteries, but the relaxation exhibits decreased dependence on synthesis of nitric oxide and increased involvement of prostaglandins and endothelium-derived hyperpolarizing factor(s). After 9 months of development, collateral arteries exhibit normal nitric oxide-dependent relaxation, similar to noncollateral arteries.  相似文献   

10.
BACKGROUND: Resting vascular tone is low in the normal pulmonary circulation, and experimental studies have suggested that this may be due to the continuous release of endothelium-derived nitric oxide (NO), a locally acting vasodilator. We have investigated whether NO contributes to the normal control of pulmonary vascular tone and resistance in children. METHODS AND RESULTS: We studied the hemodynamic effects of NG-monomethyl-L-arginine (L-NMMA), a specific inhibitor of NO synthesis, on the pulmonary circulation of six children 2 to 17 years old (mean, 9 years) with congenital heart disease but normal pulmonary blood flow, pressure, and resistance (all had isolated left heart obstructive lesions). The diameter of a segmental pulmonary artery and pulmonary blood flow velocity were measured by quantitative angiography and intra-arterial Doppler catheters. There was a consistent, dose-dependent fall in pulmonary blood flow velocity in response to three increasing doses of L-NMMA (compared with baseline, flow velocity fell to 75 +/- 7%, 62 +/- 8%, and 40 +/- 10%, P < .01). Flow velocity returned to control values with subsequent infusion of L-arginine, the substrate for NO. Thereafter, acetylcholine, an endothelium-dependent dilator, produced an increase in flow velocity (56 +/- 10% greater than baseline, P < .01). Arterial diameter was unchanged during L-NMMA and L-arginine infusions, indicating that the major effect of each agent is to alter vascular tone distal to the segmental pulmonary arteries. CONCLUSIONS: The dilator action of endothelium-derived NO contributes to the maintenance of low resting pulmonary tone in normal children. Impairment of NO production may contribute to the elevated pulmonary vascular resistance that complicates some cases of congenital heart disease.  相似文献   

11.
Endothelial cells produce C-type natriuretic peptide (CNP), which has been proposed as an endothelium-derived hyperpolarizing factor. In porcine coronary arteries, we investigated the vasodilatory effects of CNP and compared them with endothelium-dependent relaxations and hyperpolarizations to bradykinin. Isolated epicardial porcine coronary arteries were studied in organ chambers, and concentration-response curves to CNP and bradykinin were obtained. Membrane potential was measured in endothelial cells and smooth muscle of intact porcine coronary arteries during stimulation with CNP or bradykinin. In precontracted porcine coronary arteries with or without endothelium, CNP (10[-10]-10[-6] M) evoked relaxations (maximum, 42 +/- 4%) smaller than those evoked by bradykinin (100 +/- 1%), blunted in preparations contracted by KCl instead of U46619 (9,11-dideoxy-11a,9a-epoxymethano-prostaglandin F2alpha; p < 0.05) and unaffected by inhibition of NO synthase (NS). CNP evoked hyperpolarization of vascular smooth muscle of similar magnitude in endothelium-intact (-4.4 +/- 1 mV) and endothelium-denuded (-4.6 +/- 1 mV) porcine coronary arteries. Bradykinin (10[-10]-10[-6] M) evoked concentration-dependent relaxations in preparations with endothelium only. Although atrial natriuretic peptide-receptor antagonist HS-142-1 (25 microM) slightly reduced the sensitivity to bradykinin (log shift at IC50, twofold; p < 0.05), it had no effect on the maximal response to bradykinin. Inhibition of NO synthase partially attenuated, whereas high potassium chloride (30 mM) markedly inhibited relaxations to bradykinin (p < 0.05). Hyperpolarization to bradykinin was much more pronounced than that to CNP (-17 +/- 3 mV; p < 0.05 vs. CNP) and was observed in endothelium-intact preparations only and unaffected by HS-142-1. In conclusion, in contrast to bradykinin, CNP induces endothelium-independent and weaker relaxation and hyperpolarization of coronary artery vascular smooth muscle, suggesting that CNP is an unlikely mediator of endothelium-dependent hyperpolarization of porcine coronary arteries.  相似文献   

12.
BACKGROUND: Recent reports indicate that myocarditis can be associated with acute myocardial ischemia and even myocardial infarction in patients with normal arteriograms. We therefore tested the hypothesis that patients with biopsy-proven myocarditis have endothelial dysfunction despite angiographically smooth epicardial coronary arteries. METHODS AND RESULTS: Graded concentrations of the endothelium-dependent vasodilator acetylcholine (10(-6) to 10(-4) mol/L) and for comparison, the non-endothelium-dependent vasodilator nitroglycerin (0.3 mg intracoronary), were infused into the left coronary arteries of 18 patients (mean age 47+/-9 years, 8 women and 10 men) with biopsy-proven myocarditis but without angiographically demonstrable coronary artery disease. Vascular responses were analyzed by quantitative coronary angiography. Three patients had an intact vasodilator response to acetylcholine concentrations of up to 10(-4) mol/L in all segments of the left coronary artery, with a mean dilatation of +9.9%+/-2%. In contrast, paradoxical constriction by acetylcholine occurred in 9 patients, who showed a mean change in coronary artery diameter of - 11%+/-3%. Six patients had no significant change in any segments in response to acetylcholine (-2.5%+/-4%). There was a significant inverse correlation between the number of T-lymphocytes in the myocardium and the response of the epicardial coronary arteries to acetylcholine (Pearson correlation coefficient -0.49, P=.03). CONCLUSIONS: It can be assumed that the process of myocarditis is associated with impairment of endothelium-dependent vasodilation in response to acetylcholine in most patients. Vasoconstriction in the presence of acetylcholine in myocarditis is likely to reflect an abnormality of endothelial function. Endothelial dysfunction of coronary arteries may explain the occurrence of myocardial ischemia in patients with myocarditis.  相似文献   

13.
Nitric oxide mediates the vasodilator and hypotensive responses of acetylcholine infusion. It has been reported that nitric oxide could be protected from free radical destruction by forming an S-nitrosothiol compound. Furthermore, sulfhydryl donors such as N-acetylcysteine or thiosalicylic acid enhance nitric oxide production from nitroglycerin. Consequently, the hypotensive effect of intravenous acetylcholine infusion might be potentiated during the simultaneous administration of sulfhydryl donors. The objective of the present study was to test in Okamoto spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats (1) whether the hypotensive effect of acetylcholine (10 micrograms/kg per minute) was affected by the simultaneous administration of N-acetylcysteine (10 micrograms/kg per minute) or thiosalicylic acid (10 micrograms/kg per minute), and (2) whether NG-nitro-L-arginine-methyl ester (100 micrograms/kg per minute) administration was able to reverse the changes induced by acetylcholine plus N-acetylcysteine or acetylcholine plus thiosalicylic acid. The administration of acetylcholine reduced (P < .05) mean arterial pressure in WKY rats (13 +/- 2%) and SHR (14 +/- 2%) without affecting urine flow rate, urinary sodium excretion, and glomerular filtration rate. In the presence of N-acetylcysteine, the acetylcholine-induced reduction in mean arterial pressure was potentiated (P < .05) in WKY rats (24 +/- 4%) and SHR (20 +/- 2%). These changes in mean arterial pressure were accompanied by significant reductions in urine flow rate and urinary sodium excretion in WKY rats, as well as in glomerular filtration rate in SHR.2  相似文献   

14.
We investigated regional differences of in vitro responses of pulmonary arteries (6-mm OD) from the dorsocaudal (top) and cranioventral (bottom) lung regions to endothelium-dependent vasodilators (methacholine, bradykinin, and calcium ionophore A-23187). Methacholine relaxed endothelium-intact top vessels; however, in bottom vessels, a small relaxation preceded a profound contraction. In top vessels, removal of endothelial cells converted relaxation to contraction, and in bottom vessels it abolished relaxation and enhanced contraction. Bradykinin and A-23187 were more potent and caused greater endothelium-mediated relaxation in top than in bottom arteries. The endothelium-independent vasodilator sodium nitroprusside caused similar relaxations in all rings. Nomega-nitro-L-arginine and NG-monomethyl-L-arginine and methylene blue abolished relaxation of top and bottom arteries to methacholine; meclofenamate had little effect. We conclude that regional differences in endothelium-mediated relaxation are caused by differences in the magnitude of the endothelial release of nitric oxide. Similar differences in endothelium-dependent flow-mediated vasodilation and endothelial nitric oxide release may result in preferential perfusion of caudodorsal lung regions.  相似文献   

15.
BACKGROUND: Endothelium plays a key role in graft patency. My colleagues and I have developed a verapamil+nitroglycerin solution (balanced to pH 7.4) to prepare the radial artery without mechanical distention or dilation and have reported the efficacy of its antispastic action. This study was designed to investigate whether using this solution as part of the University of Hong Kong protocol to prepare the radial artery is more efficacious than papaverine solution in preserving endothelial function. METHODS: Ring segments of the radial artery taken from 25 patients undergoing coronary artery bypass grafting were studied in organ chambers. The endothelium-dependent relaxation, as the index of endothelial function, was examined by two mechanisms-receptor-mediated relaxation (by acetylcholine) and non-receptor-mediated relaxation (by calcium ionophore A23187) in U46619-induced contraction (10 nmol/L). RESULTS: In the relaxation induced by either acetylcholine (27.3% +/- 5.0% [n = 7] vs 23.9% +/- 3.9% [n = 6],p = 0.6) or A23187 (62.9% +/- 6.0% [n = 13] vs 62.3% +/- 8.4% [n = 6],p = 0.96), there was no significant difference between the control radial arteries and those treated with the verapamil+nitroglycerin solution. In the papaverine-treated rings, acetylcholine-mediated relaxation was abolished (3.3% +/- 2.6% vs 23.9% +/- 3.9%,p < 0.001) and A23187-mediated relaxation was significantly reduced (39.7% +/- 5.2% vs 62.3% +/- 8.4%, p = 0.02) compared with verapamil+nitroglycerin treatment. CONCLUSION: Use of verapamil+nitroglycerin solution to prepare the radial artery maximally preserves endothelial function. In contrast, papaverine impairs this function. Verapamil+nitroglycerin solution may be effectively and safely used to prepare the radial artery for coronary artery bypass grafting.  相似文献   

16.
BACKGROUND: Recent investigations have demonstrated the ability of vascular endothelial growth factor (VEGF) to augment the development of collateral arteries in vivo. In vitro studies have suggested that the use of VEGF also improves the endothelium-dependent relaxation of collaterals at the microvascular level. The purpose of this study was to determine in vivo the extent to which vasomotor responses of collateral microvessels are altered after VEGF treatment. METHODS AND RESULTS:Ischemia was induced in the hindlimb of 35 rats by excision of the femoral artery. Immediately thereafter, 400 microg of a plasmid encoding VEGF or ss-galactosidase (control) was transfected into limb muscles. Four weeks later, synchrotron radiation microangiography, with a spatial resolution of 30 microm, was performed to document the reactivity of collateral microvessels. Administration of the endothelium-dependent vasodilator acetylcholine failed to induce dilation of collateral microvessels in control animals. By contrast, profound dilation of collaterals was observed after acetylcholine in VEGF-treated animals. This response was evident in vessels with a linear appearance but not in those with an undulating appearance. The resulting blood flow in the ischemic limb after administration of acetylcholine in the control animals was only 64.6+/-17.0% of that of the contralateral normal limb, whereas blood flow was augmented to 106.1+/-8.4% in VEGF-treated animals (P<0.05). CONCLUSIONS: These results demonstrate in vivo that the use of VEGF restores impaired vasomotor responses in some types of collateral microvessels, which may help to provide a basis for understanding the microcirculation after therapeutic angiogenesis with VEGF.  相似文献   

17.
A novel aspect of the pharmacodynamic action of nitroglycerin is that it is a potent dilator of larger coronary arteries, yet it dilates smaller coronary microvessels submaximally and only in high concentrations. We sought to determine whether this property was shared by other organic nitrates. The effects of two mononitrates. SPM-4744 and SPM-5185 (the latter of which possesses a thioester in its structure), on coronary microvessels of different sizes were studied. Large (200-microns diameter) and small ( < 100-microns diameter) porcine coronary microvessels were studied in vitro while pressurized in a no-flow state. After constriction with the thromboxane analogue U46619, maximal dilations (as a percent of preconstricted tone at the highest applied concentration, 10 microM) of small coronary microvessels were 18 +/- 3 and 16 = 2% in response to SPM-4744 and SPM-5185, respectively. The dilations of larger coronary microvessels to SPM-4744 and SPM-5185 were 55 +/- 5 and 43 +/- 6%, respectively (both p < 0.001 vs. the small vessel responses). This pattern of differential vasodilatation of large and small coronary microvessels was similar to that produced by nitroglycerin. In contrast, sodium nitroprusside produced equivalent degrees of vasodilation of small and large coronary microvessels. Additional experiments demonstrated that both SPM compounds produced dilation of the coronary microcirculation in isolated rat heart and relaxed isolated segments of rat aortic rings only in high ( > or = 1 microM) concentrations. These data demonstrate that the organic mononitrates are similar to nitroglycerin in their selectivity for larger coronary microvessels and produce only minimal dilation of coronary microvessels < 100 microM in diameter.  相似文献   

18.
JJ Kim  DG Moon  SK Koh 《Canadian Metallurgical Quarterly》1998,10(3):145-50; discussion 151
Previous in vitro studies have demonstrated that the cavernous relaxation under hypoxia does not involve the endothelium dependent mechanism. However, the mechanism of nitric oxide pathway under hypoxia are not fully evaluated or understood yet in vivo. The changes of intracavernous pressure to various vasoactive substances were monitored in 45 mature male cats in vivo under normoxia and hypoxia (pH: 7.03, PO2: 25.52 mmHg, PCO2: 84.66 mmHg). L-arginine and SNAP (s-nitroso-n-acetyl-penicillamine) produced cavernous relaxation under normoxia, but not under hypoxia (n = 19, P < 0.01). The L-arginine-induced relaxations were inhibited by L-NAME (N omega-nitro-1-arginine-methyl-ester) or methylene blue under normoxia (n = 19, P < 0.01). The cavernous relaxation was 58% suppressed under hypoxia compared to normoxia with 10(-3) M/0.2 ml of acetylcholine (n = 22, P < 0.01). Moreover, L-NAME attenuated the acetylcholine-induced relaxation under normoxia, but not under hypoxia (n = 22, P < 0.05). Epinephrine suppressed the acetylcholine-induced relaxation in both conditions (n = 10, P < 0.01), while indomethacin significantly potentiated the acetylcholine-induced relaxation under normoxia compared to hypoxia (n = 6, P < 0.05). However, none of these substances responded in severe hypoxia (PO2 < 15 mmHg, n = 3). These results suggest that erectile and contractile responses are attenuated under hypoxia. The endothelium derived relaxation via nitric oxide does not play a role in cavernous relaxation under definitive hypoxia with acidosis like in ischemic priapism (PO2 < 30 mmHg, pH < 7.25).  相似文献   

19.
BACKGROUND: Essential hypertension is characterized by impaired endothelium-dependent vasodilation. The present study was designed to investigate whether this abnormality is a primary defect or a consequence of blood pressure increases. METHODS AND RESULTS: In offspring of essential hypertensive patients (n = 34) and normotensive subjects (n = 30), we evaluated forearm blood flow (strain-gauge plethysmography) modifications induced by intrabrachial acetylcholine (0.15, 0.45, 1.5, 4.5, and 15 micrograms.100 mL-1.min-1), an endothelium-dependent vasodilator, and sodium nitroprusside (1, 2, and 4 micrograms.100 mL-1.min-1), an endothelium-independent vasodilator. Minimal forearm vascular resistances also were calculated as the ratio between mean intra-arterial pressure and maximal forearm blood flow induced by forearm ischemia and hand exercise. Vasodilation to acetylcholine was significantly (P < .01) blunted in offspring of hypertensive patients compared with offspring of normotensive subjects, whereas the responses to sodium nitroprusside and minimal forearm vascular resistances were similar. In two subgroups of 14 offspring of essential hypertensive patients but not in 10 offspring of normotensive subjects, vasodilation to acetylcholine was increased by intra-brachial L-arginine (1 mumol.100 mL-1.min-1), the substrate for nitric oxide synthesis, whereas in the other 10 and 8 offspring of essential hypertensive patients and normotensive subjects, respectively, cyclooxygenase blockade by intra-brachial indomethacin (50 micrograms.100 mL-1.min-1) was ineffective. CONCLUSIONS: Offspring of essential hypertensive patients are characterized by a reduced response to acetylcholine linked to a defect in the nitric oxide pathway, suggesting that an impairment in nitric oxide production precedes the onset of essential hypertension.  相似文献   

20.
BACKGROUND: Postoperative hypomagnesemia is common in patients who have undergone cardiac operations and is associated with clinically significant morbidity resulting from atrial and ventricular dysrhythmias. Magnesium supplementation may increase the cardiac index in the early postoperative period. METHODS: The action of the magnesium cation on coronary vascular reactivity was studied. Segments of canine epicardial coronary artery were suspended in organ chambers to measure isometric force (95% O2/5% CO2, 37 degrees C). RESULTS: In coronary segments constricted with prostaglandin F2alpha (2 x 10[-6] mol/L), acetylcholine and adenosine diphosphate (10[-9] to 10[-4] mol/L) induced vasodilation in arteries with endothelium (n=10, each group; p < 0.05). Acetylcholine-mediated vasodilation was blocked by NG-monomethyl-L-arginine (10[-4] mol/L) and NG-nitro-L-arginine (10[-4] mol/L), two inhibitors of nitric oxide synthesis from L-arginine (n=10, p < 0.05). The removal of magnesium from the organ chamber solution impaired vasodilation in response to acetylcholine and adenosine diphosphate. However, normal endothelium-dependent vasodilation could be restored by return of magnesium to the bathing solution. Vascular relaxation in response to bradykinin (10[-9] to 10[-6] mol/L), which was found to induce endothelium-dependent vasodilation independent of nitric oxide production, was unaffected by magnesium removal (n=10). CONCLUSIONS: Hypomagnesemia selectively impaired the release of nitric oxide from the coronary endothelium. Because nitric oxide is a potent endogenous nitro-vasodilator and inhibitor of platelet aggregation and adhesion, hypomagnesemia could promote vasoconstriction and coronary thrombosis in the early postoperative period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号