首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Cu2Ag2O3 has been prepared by a precipitation method and evaluated for ambient temperature carbon monoxide oxidation. The Cu2Ag2O3 catalyst demonstrated appreciable activity and a relationship with preparation ageing time was observed. An ageing time of 4 h produced a catalyst with the highest oxidation performance. The catalyst precursor materials, prepared by drying at room temperature, displayed initial high activity, which decreased with time on line. The precursors were transformed during CO oxidation to form the mixed oxide Cu2Ag2O3 as the material was dried in situ. A comparison of the catalytic activity has been made with a representative sample of a high activity hopcalite, mixed copper/manganese oxide catalyst. On the basis of CO oxidation rate data corrected for the effect of catalyst surface area the Cu2Ag2O3, aged for 4 h was at least as active as the hopcalite catalyst.  相似文献   

2.
Temperature-programmed desorption (TPD) and oxidation (TPO) were used to investigate the decomposition and oxidation of ethanol on Al2O3, Pd/Al2O3, and PdO/Al2O3. Ethyl--13C alcohol (CH3 13CH2OH) was adsorbed on the catalysts so that reaction pathways of the two carbons could be distinguished. Alumina was mainly a dehydration catalyst, but dehydrogenation was also observed and some carbon remained on the surface. In the presence of O2, A12O3 oxidized the decomposition products and the-carbon was oxidized faster. Ethanol, which was adsorbed on A12O3, decomposed much faster on Pd/A12O3 by diffusing to Pd and undergoing CO elimination to form CH4,13CO, H2, and surface carbon. On PdO/A12O3, the decomposition was slower than on Pd/A12O3 until lattice oxygen was extracted above 450 K; the decomposition products were oxidized by lattice oxygen. In the presence of gas phase O2, Pd/Al2O3 was an active oxidation catalyst at low temperature, but lattice oxygen had to be extracted from PdO/A12O3 before it had significant oxidation activity.  相似文献   

3.
Park  Jong Soo  Doh  Dong Sup  Lee  Kwan‐Young 《Topics in Catalysis》2000,10(1-2):127-131
PdOx/MnO2 has been examined as a catalyst for CO oxidation using a conventional flow reactor at reaction temperatures between 50 and 150°C. In the reaction conditions of GHSV (gashourlyspacevelocity) of 1.22 × 105/h and CO concentration of 2000 ppm, PdOx/MnO2 showed higher catalytic activity compared with PdOx/Mn2O3, which had been previously reported as an effective catalyst due to the cooperative action of Pd and Mn2O3 for this reaction. The reason for higher activity of PdOx/MnO2 than PdOx/Mn2O3 has been investigated using TPR (temperatureprogrammed reduction) and XPS studies. TPR showed that PdOx/MnO2 could be reduced by CO at much lower temperature than PdOx/Mn2O3. During the experiment of reduction and oxidation, XPS showed that the valence of Mn in the PdOx/MnO2 was between 4+ and 3+, which is higher than that of Mn in the PdOx/Mn2O3 catalyst of which the valence has been reported to be between 3+ and 2+. It is known that in this catalyst system the support supplies oxygen onto Pd, where the oxidation occurs with adsorbed CO, and the ability of the support to provide oxygen improves the performance of the catalyst. Therefore, it was concluded that the readiness of MnO2 to be reduced with maintaining a higher oxidation state showed higher CO oxidation activity than Mn2O3 as support for PdOx.  相似文献   

4.
An investigation was conducted of noble metal and metal oxide catalysts deposited on Al2O3. The noble metals Pt, Pd, Rh the metal oxides CuO, SnO2, CoO, Ag2O, In2O3, catalysts were examined. Also investigated were noble metal Pt, Pd, Rh-doped In2O3/Al2O3 catalysts prepared by single sol–gel method. Both were studied for their capability to reduce NO by propene under lean conditions. In order to improve the catalytic activity and the temperature window, the intermediate addition propene between a Pt/Al2O3 oxidation and metal oxide combined catalyst system was also studied. Pt/Al2O3 and In2O3/Al2O3 combined catalyst showed high NO reduction activity in a wider temperature window, and more than 60% NO conversion was observed in the temperature range of 300–550 °C.  相似文献   

5.
Transition metal oxide formulations for the partial oxidation (POX) reforming of isooctane were investigated for an onboard gasoline fuel processor. Ni/M/MgO/Al2O3 systems are more active than a commercial ICI catalyst. These catalysts showed better sulfur tolerance over the commercial ICI catalyst in the POX reforming of isooctane containing sulfur (Cs = 100 ppm). There was no apparent deactivation or modification of structure during 770h onstream. It was found that Ni/(Fe,Co)/MgO/Al2O3 catalyst is a promising candidate as POX reforming catalyst for gasoline fuel processor applications.  相似文献   

6.
Selective oxidation of methanol to dimethoxymethane (DMM) was conducted in a fixed-bed reactor over an acid-modified V2O5/TiO2 catalyst. The influence of the acid modification on its structure, redox and acidic properties, and catalytic performance for methanol oxidation were investigated. The results indicated that the content of vanadia in the catalyst exhibits a vital influence on the dispersion of vanadium species, while the acid modification can enhance its surface acidity. Proper amounts of the acid (W() = 15%) and V2O5 (W(V2O5) = 15%) components loaded in the acid-modified V2O5/TiO2 catalyst are able to build a bi-functional circumstance that is favorable for the formation of DMM with high activity and selectivity. As a result, for the selective oxidation of methanol, the H2SO4-modified V2O5/TiO2 catalyst gives a much higher DMM yield at 150 °C than the unmodified one.  相似文献   

7.
H.X. Dai  H. He  W. Li  Z.Z. Gao  C.T. Au 《Catalysis Letters》2001,73(2-4):149-156
Perovskite-type oxide ACo0.8Bi0.2O2.87 (A=La0.8Ba0.2) has been investigated as a catalyst for the oxidation of carbon monoxide. X-ray diffraction results revealed that the catalyst is single-phase and cubic in structure. The results of chemical analysis indicated that in ACo0.8Bi0.2O2.87, bismuth is pentavalent whereas cobalt is trivalent as well as bivalent; in La0.8Ba0.2CoO2.94, cobalt ions exist as Co3+ and Co4+. The substitution of Bi for Co enhanced the catalytic activity of the perovskite-type oxide significantly. Over the Bi-incorporated catalyst, at equal space velocities and with the rise in CO/O2 molar ratio, the temperature for 100% CO conversion shifted to a higher range; at a typical space velocity of 30000 h–1 and a CO/O2 molar ratio of 0.67/1.00, 100% CO conversion was observed at 250°C. Over ACo0.8Bi0.2O2.87, at equal CO/O2 molar ratio, the temperature for 100% CO conversion decreased with a drop in space velocity; the lowest being 190°C at a space velocity of 5000 h–1. The result of O2-TPD study illustrated that the presence of Bi ions caused the lattice oxygen of La0.8Ba0.2CoO3– to desorb at a lower temperature. The results of TPR, 18O/16O isotopic exchange, and CO-pulsing investigations demonstrated that the lattice oxygen of the Bi-doped catalyst is highly mobile.  相似文献   

8.
The oxidation reaction of CO with O2 on the FeOx/Pt/TiO2 catalyst is markedly enhanced by H2 and/or H2O, but no such enhancement occurs on the Pt/TiO2 catalyst. Isotope effects were studied by H2/D2 and H2O/D2O on the FeOx/Pt/TiO2 catalyst, and almost the same magnitude of isotope effect of ca. 1.4 was observed for the enhancement of the CO conversion by H2/D2 as well as by H2O/D2O at 60 °C. This result suggests that the oxidation of CO with O2 via such intermediates as formate or bicarbonate in the presence of H2O, in which H2O or D2O acts as a molecular catalyst to promote the oxidation of CO as described below.   相似文献   

9.
Selective oxidation of H2S to elemental sulfur was studied using the Cu-V and Cu-V-Mo mixed oxide catalysts with different O2/H2S ratios between 0 and 3. High activities and high sulfur selectivities reaching 0.98 were obtained with the Cu-V catalyst. The Cu-V-Mo mixed oxide catalyst showed higher activity with a somewhat less selectivity. The Cu-V catalyst, which was originally in the form of α-Cu2V2O7, was converted to Cu3VS4, CuS and VOx during the initial stages of reaction. Oxidized form of the catalyst resulted in the formation of mostly SO2. Partially reduced catalyst containing V+2 and V+4 was highly selective for the production of elemental sulfur, which was produced by a series of redox reactions involving lattice oxygen.  相似文献   

10.
(CuO)1–z(La2O3)z/2 based catalysts with 0.0z1.0 supported on -Al2O3 have been prepared in situ and the phases formed have been identified by XRD, SEM and TEM/EDS studies. The catalyst with z=0.5 exhibited the best catalytic activity for oxidation of CO (T 50=295 and 390C with degrees of conversions of 93 and 92% at 450C under rich and lean conditions, respectively) and C3H6 (291 and 414C; 93 and 83%) and reduction of NO (405C; 60 and 0%). This catalyst contained appreciable amounts of the perovskite phase LaAl1–xCuxO3 and the enhanced catalytic properties are ascribed to the presence of this phase. Addition of Pd to this catalyst implied that the degree of conversion of NO increased and that the light-off temperatures for all involved gas species decreased. Ageing experiments revealed that LaAl1–xCuxO3 decomposed and that Cu containing Pd particles were formed during this procedure which in turn deteriorated the catalytic properties of the catalyst.  相似文献   

11.
A study of the effect of the aging atmosphere on the activity of co-precipitated copper zinc oxide catalysts for the ambient temperature oxidation of carbon monoxide is described and discussed. Four aging atmospheres are reported: air, N2, H2 and CO2, and both the precipitation and the aging of the precipitate were carried out by flowing these gases through the precipitation cell at constant pH and temperature. For all atmospheres, the surface area of the final CuO-ZnO catalyst increases with aging time and, consequently, the specific activity (mol CO converted/g catalyst/h) also increases. However, the intrinsic activity (mol CO converted/m2/h) initially decreases with aging time before attaining a steady level. The highest activity catalysts were obtained using air as the aging atmosphere and TPR studies indicate that this catalyst is less readily reduced. Catalysts prepared using CO2 as the aging atmosphere have lower activity, although the surface areas of these catalysts are not markedly lower. The study demonstrates that selection of the appropriate aging atmosphere, as well as the aging time, is an important parameter for the preparation of co-precipitated catalysts.  相似文献   

12.
SO2 oxidation over the V2O5/TiO2 SCR catalyst   总被引:3,自引:0,他引:3  
The effects of V2O5 loading of the V2O5/TiO2 SCR catalyst on SO2 oxidation activity were examined by infrared spectroscopy (DRIFT) and SO2 oxidation measurement. Vanadium oxide added to the catalyst was found to be well dispersed over the TiO2 carrier until covered with monolayer V2O5. The rate of SO2 oxidation increased almost linearly with V2O5 loading below the monolayer capacity and attained saturation with further increase. The hydroxyl groups bonded to vanadium atoms, V–OH, might be altered by SO2 oxidation. Both V=O and V–OH groups are likely involved in the adsorption and desorption of SO2 and SO3.  相似文献   

13.
This work considers the oxidation of ammonia (NH3) by selective catalytic oxidation (SCO) over a CuO/La2O3 composite catalyst at temperatures between 150 and 400 °C. A CuO/La2O3 composite catalyst was prepared by co-precipitation of copper nitrate and lanthanum nitrate at various molar concentrations. This study also considers how the concentration of influent NH3 (C0 = 1000 ppm), the space velocity (GHSV = 92,000 l/h), the relative humidity (RH = 12%) and the concentration of oxygen (O2 = 4%) affect the operational stability and the capacity for removing NH3. The catalysts that were characterized using FTIR, XRD, UV-Vis, BET and PSA, have shown that the catalytic behavior is related to the copper (II) oxide, while lanthanum (III) oxide may serve only to provide active sites for the reaction during a catalyzed oxidation run. The experimental results show that the extent of conversion of ammonia by SCO in the presence of the CuO/La2O3 composite catalyst was a function of the molar ratio. The ammonia was removed by oxidation in the absence of CuO/La2O3 composite catalyst, and around 93.0% NH3 reduction was achieved during catalytic oxidation over the CuO/La2O3 (8:2, molar/molar) catalyst at 400 °C with an oxygen content of 4.0%. Moreover, the effect of the reaction temperature on the removal of NH3 in the gaseous phase was also monitored at a gas hourly space velocity of under 92,000 h− 1.  相似文献   

14.
Peculiarities in catalytic activity in carbon monoxide oxidation as well as some structure, electronic and magnetic properties of the three oxide catalysts, Mn3+–O/Al2O3 (1), Mn3+–O–Fe/Al2O3 (Mn-substituted spinel, 2) and -Fe2O3/Al2O3 (3), were studied by kinetic measurements and by Mössbauer spectroscopy. The catalysts 1 and 2 showed a kinetic bistability with a sharp transition towards more reactive state at 200°C (ignition point). In contrast, for catalyst 3, at 200–250°C, the behavior of reaction rate against temperature did not display noticeable hysteresis. On cooling the catalysts 1 and 2, extinction was observed at about 170 and 120°C, respectively, i.e., at 30–80°C lower than the corresponding ignition points. Proximity of activation energy for the high and low activity (15–19 kJ/mol) for both Mn-containing catalysts suggests an increase in the number of active sites at high temperature with no changes in the reaction mechanism. The considerable difference between Mn-containing catalysts 1, 2 and Fe-containing catalyst 3 may be caused by Jahn–Teller (JT) type distortions of the oxygen polyhedron around Mn3+. A significant spontaneous axial bond stretching within the local polyhedron seems to diminish Mn–O binding energy, facilitate the participation of surface oxygen species, OS, in the oxidation of CO by a redox mechanism and promote oxygen vacancies at the surface that would cause considerable effect on the activity. An increase in the width of the counterclockwise hysteresis loop for the catalyst 2 compared to the catalyst 1 indicates that clusters of mixed spinel provide more active sites and more labile OS species than clusters of the binary Mn oxide.  相似文献   

15.
PdCl2-CuCl2 catalyst supported on activated carbon was examined for the low temperature oxidation of CO. The catalyst developed in the present study was active and stable at ambient conditions if water were existing in the feed gas stream. The addition of Cu(NO3)2 into the PdCl2-CuCl2 catalyst significantly enhanced the CO oxidation activity. X-ray diffraction study revealed that the role of Cu(NO3)2 was to stabilize active Cu(II) species, Cu2Cl(OH)3, on the catalyst surface which maintains the redox property of palladium. When HC1 and SO2 were also existing in the feed, they easily inactivated the catalyst. It was found that HC1 and SO2 inhibited the formation of active Cu(II) species on the catalyst surface.  相似文献   

16.
The catalytic oxidation of CO over nanocrystallite Cu x Mn(1−x)Fe2O4 powders was studied using advanced quadruple mass gas analyzer system. The oxidation of CO to CO2 was investigated as a function of reactants ratio and firing temperature of ferrite powders. The maximum CO conversion was observed for ferrite powders which have equal amount of Cu2+ and Mn2+ (Cu0.5Mn0.5Fe2O4). The high catalytic activity of Cu0.5Mn0.5Fe2O4 can be attributed to the changes of the valence state of catalytically active components of the ferrite powders. The firing temperature plays insignificant role in the catalytic activity of CO over nanocrystallite copper manganese ferrites. The mechanism of catalytic oxidation reactions was studied. It was found that the CO catalytic oxidation reactions on the surface of the Cu x Mn1−x Fe2O4 was done by the reduction of the ferrite by CO to the oxygen deficient lower oxide then re-oxidation of this phase to the saturated oxygen metal ferrite again.  相似文献   

17.
The steam reforming of methanol was studied over Cu/Al2O3 catalysts with the addition of yttria-doped ceria (YDC). The YDC-modified catalysts were prepared by impregnating a -Al2O3 support with Y and Ce then with Cu. The addition of YDC drastically enhanced the activity of Cu/Al2O3 in the methanol reforming reaction. The enhanced activity was attributed to the increase of Cu+ species by YDC in the methanol reforming environment. However, the addition of YDC decreased the copper dispersion. The Cu dispersion could be enhanced by adding chromium oxide. The addition of YDC and Cr where Al2O3 was first impregnated with Cr then with YDC showed the most pronounced enhancement of the catalyst activity. At reaction temperatures of 200250 °C, the CO concentration in the products was smaller than 0.1%.  相似文献   

18.
The SSITKA measurements were performed in the steady state of complete methane oxidation on the Pd/Al2O3 and Pt/Al2O3 catalysts. It was found that the number of intermediates and their average life-time on the catalyst surface changes with the increase of reaction temperature. On the Pd/Al2O3 catalyst there is larger number of active centres than on Pt/Al2O3 catalyst which permits the course of methane oxidation at lower temperatures.  相似文献   

19.
Chaoquan Hu   《Catalysis communications》2009,10(15):2008-2012
Ultrafine Cu0.1Ce0.5Zr0.4O2−δ catalyst operated in a fluidized bed reactor was found to be very effective for complete oxidation of dilute benzene in air. The complete conversion of benzene could be achieved at reaction temperature as low as 220 °C. The mechanism of benzene oxidation over the Cu0.1Ce0.5Zr0.4O2−δ catalyst was investigated by conducting pulse reaction of pure benzene in the absence of O2 over the catalyst and the results indicated the involvement of lattice oxygen from the catalyst in benzene oxidation.  相似文献   

20.
The combined partial oxidation and CO2 reforming of methane to synthesis gas was investigated over the reduced Co/MgO, Co/CaO, and Co/SiO2 catalysts. Only Co/MgO has proved to be a highly efficient and stable catalyst. It provided about 94–95% yields to H2 and CO at the high space velocity of 105000 mlg–1h–1 and for feed ratios CH4/CO2/O2=4/2/1, without any deactivation for a period of study of 110 h. In contrast, the reduced Co/CaO and Co/SiO2 provided no activity for the formation of H2 and CO. The structure and reducibility of the calcined catalysts were examined using X-ray diffraction and temperature-programmed reduction, respectively. A solid solution of CoO and MgO, which was difficult to reduce, was identified in the 800°C calcined MgO-supported catalyst. The strong interactions induced by the formation of the solid solution are responsible for its superior activity in the combined reaction. The effects of reaction temperature, space velocity, and O2/CO2 ratio in the feed gases (while keeping the C/O ratio constant at 1/1) were investigated over the Co/MgO catalyst. The H2/CO ratio in the product of the combined reaction increased with increasing O2/CO2 ratio in the feed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号