首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
采用差示扫描量热仪以连续加热的方式研究了Zr50Ti5Cu18Ni17Al10块体金属玻璃的热稳定性。其玻璃转变激活能(Eg)以及晶化激活能(Ep1和Ep2)分别为438±11,284±8和323±11kJ/mol。采用压缩试验研究了金属玻璃的室温力学性能,初始应变速率为1×10-4s-1。直径为3mm的金属玻璃棒呈现良好的力学性能,最大塑性应变达3%,杨氏模量和断裂强度的最大值分别为90GPa和1968MPa。多条剪切带的交织、分叉和滑移以及宽度为60?m的较大临界剪切台阶是Zr50Ti5Cu18Ni17Al10块体金属玻璃具有较高压缩塑性的主要原因。  相似文献   

2.
采用铜模吸铸法制备了Zr50Ti5Cu18Ni17Al10块体非晶合金,并采用差示扫描量热仪(DSC)和X射线分析(XRD)对其热稳定性进行了系统研究.结果表明,随着加热温度的提高,玻璃转变温度Tg、晶化开始温度Tx和峰值温度Tp均向高温区移动,说明该合金的玻璃转变和晶化均为动力学过程.用Kissinger方法计算出玻璃转变激活能(Eg)以及晶化激活能(Ep1和Ep2)分别为438±11、284±8和323±11 kJ/mol.该合金的晶化过程分为纳米晶析出、初生相(ZrAl、ZrCu和Zr2Ni)析出以及稳定相(Zr2Cu、Zr2Ni、ZrCu、ZrAl和一个未知相)析出3个阶段.  相似文献   

3.
研究网络结构对Zr?Al?Ni?Cu块体金属玻璃的塑性和断裂模式的影响。采用化学腐蚀法显示并用SEM观察横截面和纵截面的微观结构,采用室温单向压缩试验测定力学性能。结果表明,网络结构显著地影响Zr?Al?Ni?Cu块体金属的塑性和断裂模式,当网络结构的尺寸达到某一临界值时,塑性和断裂模式发生转变。当胞状结构的尺寸约为3μm时,Zr基块体金属玻璃表现出塑性,并且塑性随胞状尺寸的增加而降低。断裂模式随胞状尺寸的增加逐渐由单一45°剪切面断裂向双45°剪切面断裂,最后转变为劈裂断裂。另外,探讨这些Zr基块体金属玻璃的塑性和断裂模式发生改变的机理。  相似文献   

4.
研究微量元素Ag、Ti、Ga、Ni和Sn对Cu55Zr38Al7铜基块体金属玻璃形成能力及力学性能的影响。结果表明:添加2%(摩尔分数)的Ag、Ti或Ga均可以提高Cu55Zr38Al7合金的玻璃形成能力;用6%的Ag替代Cu,玻璃棒的临界直径可从2 mm增加到4 mm;因此,替代化学性质相似的元素或者扩大合金系的原子尺寸范围对提高玻璃形成能力具有显著的效果;然而,添加微量元素均不同程度地降低Cu-Zr-Al金属玻璃的硬度。断口表面形貌显示;微量相似元素替代影响基体在压缩过程中剪切带的繁殖;在微量元素替代的伪四元铜基块体金属玻璃中,2%Ti和2%Ag替代可分别获得最大压缩强度2 163 MPa和最大压缩应变8.7%。因此,通过添加微量元素可以调谐金属玻璃的玻璃形成能力和力学性能。  相似文献   

5.
通过磁悬浮熔炼和铜模吸铸法制备直径3mm的(Zr0.55Al0.10Ni0.05Cu0.30)100-xFex(x=0,1,2,3,4)合金试样,研究Fe元素的微量添加对Zr55Al10Ni5Cu30块体金属玻璃非晶形成能力和力学性能的影响。研究表明,合理添加Fe元素(不超过3%,摩尔分数)导致约化玻璃转变温度Trg(=Tg/Tl)和参数γ(=Tx/(Tg+Tl))增大,因而其非晶形成能力增大,但添加过量的Fe元素(4%)会导致其非晶形成能力的降低。添加Fe元素也会显著地改善Zr55Al10Ni5Cu30块体金属玻璃的压缩塑性及提高其压缩断裂强度,当Fe元素的添加量为2%时,直径3mm、长度6mm的试样在压缩时出现一定的塑性及加工硬化现象。Fe元素添加量为4%形成的金属玻璃基复合材料,同样也显示良好的压缩塑性和高的压缩断裂强度。  相似文献   

6.
采用悬浮熔炼-铜模吸铸法制备了Cu50Zr42Al8块体金属玻璃,研究了其楔形试样的组织演变.随着熔体凝固过程中冷却速度的变化,楔形试样中存在表面全非晶区,中心晶体区以及二者之间的过渡区域,并确定Cu50Zr42Al8块体金属玻璃临界尺寸为4.8 mm.分别考察了φ4 mm铸态完全非晶棒和φ5 mm非晶复合棒的力学性能.φ4 mm非晶棒的压缩断裂强度,弹性应变和塑性应变分别为2260 MPa,2.0%,0.4%,几乎没有塑性变形.而φ5 mm铸态非晶复合棒的屈服强度、断裂强度分别为1670MPa、1849 MPa,弹性应变和塑性应变分别为1.6%和1.9%.非晶基体中存在的马氏体相CuZr和正交晶相Cu10Zr7的竞争影响了非晶复合棒的最终力学行为.  相似文献   

7.
利用DSC,DTA,XRD研究了NiTiZrAlCuSi块体非晶合金的形成。采用铜模铸造工艺使块体金属玻璃最大直径从Ni42Ti25Zr25Al8合金的小于0.5mm增加到Ni42Ti20Zr25Al8Cu5的1mm,然后增加到Ni42Ti20Zr21.5Al8Cu5Si3.5合金的4mm。在Ni42Ti20Zr21.5Al8Cu5Si3.5和Ni42Ti20Zr20.5Al8Cu5Si4.5合金中获得最大的约化玻璃转变温度Trg(=Tg/T1)及最大的过冷液相区△Tx(=Tx-Tg),分别为0.570和93K。Si显著增加玻璃形成能力主要是抑制引起异质形核的Ni(TiZr)相和(TiZr)(CuAl)2相的形成。室温压缩实验表明:Ni42Ti20Zr21.5Al8Cu5Si3.5合金抗压断裂强度为2724MPa。  相似文献   

8.
研究试样直径和高径比对3种镁基块体金属玻璃Mg65Cu25Gd10、Mg65Cu20Ni5Gd10和Mg75Ni10Gd10压缩变形行为的影响,探讨镁基块体金属玻璃断裂模式的转变机制。压缩应力—应变曲线和断口扫描电镜观察结果表明:镁基块体金属玻璃Mg65Cu25Gd10、Mg65Cu20Ni5Gd10和Mg75Ni10Gd10在压缩条件下可在3个不同的变形阶段发生断裂,第1个是弹性变形阶段,在此变形阶段金属玻璃都以解理方式断裂,无塑性;第2个变形阶段的断裂为解理和剪切混合方式断裂,金属玻璃具有一定的剪切塑性变形;第3个变形阶段为稳定剪切锯齿塑性流变阶段,在此变形阶段金属玻璃都是以剪切方式断裂,具有稳定的塑性变形;镁基块体金属玻璃的断裂模式与尺寸有关,减小试样的直径和高径比都有利于块体金属玻璃由解理断裂向剪切断裂的转变,强度和塑性也相应地得到提高。  相似文献   

9.
采用铜模喷铸法制备Ti40Zr25Ni8Cu9Be18块体非晶合金,通过分离式霍普金森压杆装置(SHPB)对Ti40Zr25Ni8Cu9Be18块体非晶合金进行室温(25℃)和液氮温度(–196℃)条件下的高应变率加载动态压缩测试,结合S-4800型扫描电镜(SEM)对压缩试样断口进行观察,对比在室温和液氮温度下Ti40Zr25Ni8Cu9Be18块体非晶合金动态压缩性能及其断口形貌特征的差异。结果表明:Ti40Zr25Ni8Cu9Be18块体非晶合金室温动态压缩时,随应变率提高抗压强度无明显变化,没有应变率硬化效应。在液氮温度动态压缩时,抗压强度随着应变率提高有较大幅度增加,存在应变率硬化效应。液氮温度时的动态抗压强度明显高于室温动态抗压强度。Ti40Zr25Ni8Cu9Be18块体非晶合金室温动态压缩为剪切断裂,微观形貌上出现脉状花样和剪切带,剪切带诱发了裂纹的形成,裂纹沿着剪切带扩展。液氮温度下断口微观形貌有解理台阶和河流花样。室温动态断裂过程中,局域应变集中产生塑性变形;液氮温度下压缩动能转化的热量大部分被抵消,削弱了绝热剪切作用。  相似文献   

10.
《金属功能材料》2007,14(5):47-47
近10年来开发了一系列的块体金属玻璃,由于其优越的物理和力学性能而有可能成为很有发展前途的功能材料和结构材料。目前只有几种块体金属玻璃可以获得直径〉20mm的材料如Zr基合金(Zr55 Al10 Ni5 Cu30 Zr41.2 Ti13.8 Cu12.5 N10 Be22.5),Pd基(Pd40 Ct30 Ni10 P20),Pt基(Pt57.5 Cu14.7 Ni5.3 P22.5),  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号