首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Liquefaction of granular soil deposits is one of the major causes of loss resulting from earthquakes. The accuracy in the assessment of the likelihood of liquefaction at a site affects the safety and economy of the design. In this paper, curves of cyclic resistance ratio (CRR) versus cone penetration test (CPT) stress-normalized cone resistance qc1 are developed from a combination of analysis and laboratory testing. The approach consists of two steps: (1) determination of the CRR as a function of relative density from cyclic triaxial tests performed on samples isotropically consolidated to 100 kPa; and (2) estimation of the stress-normalized cone resistance qc1 for the relative densities at which the soil liquefaction tests were performed. A well-tested penetration resistance analysis based on cavity expansion analysis was used to calculate qc1 for the various soil densities. A set of 64 cyclic triaxial tests were performed on specimens of Ottawa sand with nonplastic silt content in the range of 0–15% by weight, and relative densities from loose to dense for each gradation, to establish the relationship of the CRR to the soil state and fines content. The resulting (CRR)7.5-qc1 relationship for clean sand is consistent with widely accepted empirical relationships. The (CRR)7.5-qc1 relationships for the silty sands depend on the relative effect of silt content on the CRR and qc1. It is shown that the cone resistance increases at a higher rate with increasing silt content than does liquefaction resistance, shifting the (CRR)7.5-qc1 curves to the right. The (CRR)7.5-qc1 curves proposed for both clean and silty sands are consistent with field observations.  相似文献   

2.
Two series of centrifuge model tests were conducted using Nevada sand. Four saturated models placed in a mildly inclined laminar box and simulating a 6-m-thick deposit were shaken inducing liquefaction effects and lateral spreading. The sand was deposited at a relative density, Dr = 45 or 75%; two of the 45% models were subjected to overconsolidation or preshaking. The second series involved in-flight measurements of static cone tip penetration resistance, qc, simulating the standard cone penetration test (CPT) 36-mm cone. Values of qc increased with Dr, overconsolidation, and preshaking. A normalized resistance, qc1N, was assigned to each of the four liquefaction/lateral spreading models. Increases in Dr, overconsolidation, and preshaking decreased liquefaction and ground deformation, but relative density alone captured these effects rather poorly. Conversely, qc1N predicted extremely well the liquefaction and lateral spreading response of the four models, confirming Seed’s hypothesis to explain the success of penetration-based seismic liquefaction charts. The depth to liquefaction measured in the four centrifuge models is consistent with the field CPT liquefaction chart.  相似文献   

3.
The settlement of foundations under working load conditions is an important design consideration. Well‐designed foundations induce stress‐strain states in the soil that are neither in the linear elastic range nor in the range usually associated with perfect plasticity. Thus, in order to accurately predict working settlements, analyses that are more realistic than simple elastic analyses are required. The settlements of footings in sand are often estimated based on the results of in situ tests, particularly the standard penetration test (SPT) and the cone penetration test (CPT). In this article, we analyze the load‐settlement response of vertically loaded footings placed in sands using both the finite element method with a nonlinear stress‐strain model and the conventional elastic approach. Calculations are made for both normally consolidated and heavily overconsolidated sands with various relative densities. For each case, the cone penetration resistance qc is calculated using CONPOINT, a widely tested program that allows computation of qc based on cavity expansion analysis. Based on these analyses, we propose a procedure for the estimation of footing settlement in sands based on CPT results.  相似文献   

4.
Pipe piles can be classified as either closed- or open-ended piles. In the present paper, the load capacity of both closed- and open-ended piles is related to cone penetration resistance qc through an experimental program using calibration chamber model pile load tests and field pile load tests. A total of 36 calibration chamber pile load tests and two full-scale field pile load tests were analyzed. All the test piles were instrumented for separate measurement of each component of pile load capacity. Based on the test results, the normalized base resistance qb/qc was obtained as a function of the relative density DR for closed-ended piles, and of both the relative density DR and the incremental filling ratio (IFR) for open-ended piles. A relationship between the IFR and the relative density DR is proposed as a function of the pile diameter and driving depth. The relationship between IFR and DR allows the estimation of IFR and thus of the pile load capacity of open-ended piles at the design stage, before pile driving operations.  相似文献   

5.
Sand dilates with shearing at a rate that increases with increasing relative density (DR) and decreases with increasing effective confining stress (σc′). The peak friction angle of a sand depends on its critical-state friction angle and on dilatancy. In this paper, we develop a simple correlation between peak friction angle, critical-state friction angle, and dilatancy based on triaxial compression and plane-strain compression test data for sand for a range of confining pressures from very low levels to approximately 196 kPa.  相似文献   

6.
High Overburden Stress Effects in Liquefaction Analyses   总被引:2,自引:0,他引:2  
A reevaluation is presented of two factors that can strongly affect the estimation of liquefaction resistance for clean sands under high effective overburden stresses (σv′): the relation used to normalize penetration resistances to a σv′ of 1 atm (i.e., CN), and the adjustment factor for the effects of σv′ on cyclic resistance ratio (i.e., Kσ). These two factors have been investigated in a number of ways and several relations exist for each of them. An improved CN relation is developed based on cone penetration theory and validation against calibration chamber test data for both cone penetration and standard penetration tests. A relative state parameter index (ξR) is shown to provide a consistent theoretical framework for interrelating the penetration and cyclic loading resistances. It is subsequently shown that the CN and Kσ relations are interrelated through the sand properties and relative density (DR) in ways that have compensating effects on the predicted cyclic resistance. The derived relations provide an improved representation of the effects of high σv′ levels, and reduce the conservatism that results when some established relations are extended to σv′ levels higher than they were calibrated for.  相似文献   

7.
A three-dimensional finite-element analysis was performed to analyze the effect of soil anisotropy on the inclined piezocone penetration test in normally consolidated clay. The piezocone penetration was numerically simulated based on a large strain formulation using the commercial finite-element code ABAQUS, and the anisotropic modified cam clay model (AMCCM) was chosen and implemented into ABAQUS through the user subroutine UMAT. For verification purposes, numerical simulations were first performed on previously conducted calibration chamber tests, and the predicted results were compared with the measured values. For different initial stress conditions and different penetration angles, the cone tip resistance profile; excess pore pressure profile at the cone tip; typical stress, strain and excess pore pressure distributions around the cone; and excess pore pressure dissipation at the cone tip are provided. This study shows that when the initial stress state is anisotropic, the soil behavior is different under different angles of penetration.  相似文献   

8.
Statistical analysis using a discriminant model is applied to 399 cone penetration test (CPT) data sets of both liquefaction and nonliquefaction cases, including 174 sets from the Chi-Chi earthquake in Taiwan and 225 sets of synthesized data. The discriminant model employed is a multivariate statistical method. In situ testing results of cone tip resistance qc and sleeve friction ratio Rf are adopted as the major parameters for analyses. A model for evaluating liquefaction potential using CPT-qc data is also established in this study, which allows calculated results to be compared with the empirical curves.  相似文献   

9.
Due to lack of soil sampling during conventional cone penetration testing, it is necessary to characterize and classify soils based on tip and sleeve friction values as well as pore pressure induced during and after penetration. Currently available semiempirical methods exhibit a significant variability in the estimation of soil type. Within the confines of this paper it is attempted to present a new probabilistic cone penetration test (CPT)-based soil characterization and classification methodology, which addresses the uncertainties intrinsic to the problem. For this purpose, a database composed of normalized corrected cone tip resistance (qt,1,net), normalized friction ratio (FR), fines content (FC), liquid limit (LL), plasticity index (PI), and soil type based on the unified soil classification system was complied. Soil classification was performed by laboratory testing of the standard penetration test disturbed samples retrieved from the boreholes within mostly 2?m of each CPT hole. The resulting database was probabilistically assessed through Bayesian updating methodology allowing full and consistent representation of relevant uncertainties, including (1) model imperfection; (2) statistical uncertainty; and (3) inherent variability. As a conclusion, different sets of FC, LL, PI, and A-line boundary curves along with a new CPT-based, simplified soil classification scheme are proposed in the qt,1,net and FR domain. Probabilistic uses of the proposed models are illustrated through a set of illustrative examples.  相似文献   

10.
A series of direct shear tests were conducted on the JSC-1A lunar regolith simulant in a 101.6-mm- (4-in.-) diameter container. The direct shear test provides a unique mode of failure that aids the development of excavation tools for the Moon. Relative density and normal load were varied to study the strength behavior of such granular material at peak and critical state conditions. The values of the internal friction angle ranged from 30 to 70°. A relationship between the internal friction angle of the direct shear and the published triaxial compression test results is presented. Additionally, the measured dilatancy angle is related to the difference in peak and critical state stress friction angles.  相似文献   

11.
Determination of Pile Base Resistance in Sands   总被引:4,自引:0,他引:4  
Advances in the design of axially loaded piles are desirable because significant cost savings may result. Well-designed piles settle by amounts that are well tolerated by the superstructure and induce strains around the pile base that are far removed from failure. To investigate the development of base resistance for a given soil condition and increasing settlements, piles embedded in sand are modeled using the finite-element method with a nonlinear elastic-plastic model. Based on the load-settlement response obtained from the finite-element analysis and cone penetration resistance obtained from cavity expansion and stress rotation analyses, values of normalized base resistance, defined as base resistance divided by cone penetration resistance, are obtained. The relationship between base resistance and cone resistance is useful in the design of deep foundation using cone penetration test results. The effect of the initial coefficient of earth pressure at rest K0 on normalized base resistance values is also investigated. Several case histories, including both nondisplacement and displacement piles, are used for comparison with the theoretical results.  相似文献   

12.
This paper simulates the three-dimensional axisymmetric triaxial compression of JSC-1A lunar regolith simulant under lunar and terrestrial gravity environments under a wide range of confining pressures and relative densities. To accomplish this, the discrete element method (DEM), using Particle Flow Code In Three-Dimensional (PFC3D) software, was employed. The paper focuses on the peak and the critical state (CS) friction angles, which were predicted in the ranges of 35.4°–82.7° and 31.2°–79.8°, respectively, depending on the specimen density and confining pressure. A significant increase in peak and CS friction angles was predicted at near-zero confining pressure. The DEM results validated an empirical model that relates the peak friction angle with the CS friction angle, relative density, and mean effective stress at the CS. Comparison of DEM results with lunar in situ measurements of friction angle, from Apollo missions and other extraterrestrial laboratory experiments under a microgravity environment, shows a favorable agreement.  相似文献   

13.
Results from dynamic penetration tests are traditionally interpreted on the basis of empirical correlations, this being a frequent criticism to these tests. An alternative rational method of interpretation is proposed in this paper from which the energy delivered to the composition of rods is used to calculate a dynamic force that represents the reaction of the soil to the penetration of the sampler (Fd). Interpretation of soil properties both in sand and clay is based on this calculated dynamic force from which the internal friction angle and the undrained shear strength can be estimated. This is achieved from a simple combination of limit equilibrium analysis and cavity expansion theory. Case studies gathered from the Brazilian experience are reported in this paper to illustrate the applicability of the proposed approach.  相似文献   

14.
In this paper, the effects of penetration rate on cone resistance in saturated clayey soils are investigated. Shear strength rate effects in clayey soils are related to two physical processes: the increase of shear strength with increasing rate of loading and the increase of shear strength as the process transitions from undrained to drained. Special focus is placed on this second effect. Cone penetration tests were performed at various penetration rates both in the field and in a calibration chamber, and the resulting data were analyzed. The field cone penetration tests were performed at two test sites with fairly homogeneous clayey silt and silty clay layers located below the groundwater table. Additionally, tests with both cone and flat-tip penetrometers in sand-clay mixtures were performed in a calibration chamber to investigate the change in drainage conditions from undrained to partially drained and from partially drained to fully drained. A series of flexible-wall permeameter tests were conducted in the laboratory for various clayey sand mixtures prepared at various mixing ratios in order to obtain values of the coefficient of consolidation, which is required to estimate the penetration rates below which penetration is drained and above which penetration is undrained. A correlation between cone resistance and drainage conditions was established based on the results of the calibration chamber and field penetration tests.  相似文献   

15.
This paper discusses the development of a framework for classifying soil using normalized piezocone test (CPTU) data from the corrected tip resistance (qt) and penetration pore-water pressure at the shoulder (u2). Parametric studies for normalized cone tip resistance (Q = qcnet/σv0′) and normalized excess pressures (Δu2/σv0′) as a function of overconsolidation ratio (OCR = σvy′/σv0′) during undrained penetration are combined with piezocone data from clay sites, as well as results from relatively uniform thick deposits of sands, silts, and varietal clays from around the globe. The study focuses on separating the influence of yield stress ratio from that of partial consolidation on normalized CPTU parameters, which both tend to increase Q and decrease the pore pressure parameter (Bq = Δu2/qcnet). The resulting recommended classification chart is significantly different from existing charts, and implies that assessment of data in Q–Δu2/σv0′ space is superior to Q–Bq space when evaluating piezocone data for a range of soil types. Still, there are zones of overlap for silty soils and heavily overconsolidated clays, thus requiring that supplementary information to Q and Δu2/σv0′ be obtained in unfamiliar geologies, including variable rate penetration tests, dissipation tests, CPT friction ratio, or soil sampling.  相似文献   

16.
Effect of Surface Texturing on CPT Friction Sleeve Measurements   总被引:1,自引:0,他引:1  
As the use of the cone penetration test (CPT) has increased for geotechnical site characterization, significant research has been performed to identify and control the factors that affect the tip (qc), sleeve (fs), and pore pressure (u) measurements. However, a number of factors that affect the friction sleeve have yet to be understood, appreciated, and accounted for in penetrometer designs. This paper highlights a number of these issues, with specific attention centered on the effect of surface texturing on the friction sleeve measurement. An understanding of the role of surface roughness on soil-geomaterial interfaces provides a framework for analyzing the effect on the friction sleeve measurement and could provide a basis to improve its design. A series of CPT soundings were performed in the southeast United States with conventional smooth and textured friction sleeves. Results indicate that friction measurements with a textured sleeve are 70% greater on average than the value obtained with a conventional smooth friction sleeve in sand and provide a basis for developing new design procedures where interface values are required.  相似文献   

17.
Cavity expansion analysis plays a significant role in modern soil mechanics. The analysis of many of the most important problems in the practice of geotechnical engineering (such as cone penetration testing, pile loading, or pressuremeter testing) rely to a large extent on cavity expansion analyses. Cavity expansion processes are of two basic types: expansion from a finite radius and expansion from zero initial radius. It is usual to use a different type of analysis for each of these problems. Analysis of the cavity creation problem yields only the limit pressure, but not necessarily information on the pressure‐strain relationship during expansion. Analysis of expansion from an initially finite cavity radius gives a pressure‐strain curve, but no information on the limit pressure. In this article, we present a simple numerical analysis that provides the solution to both problems simultaneously. The analysis takes full account of the flow rule and dependence of the friction angle on stress state, providing a rigorous solution for the cavity expansion problem throughout the plastic zone. The analysis can be used for both spherical and cyclindrical cavities. As illustration of the versatility of the analysis, plots of limit pressure versus soil state, cavity pressure versus strain for various soil states, and evolution of soil state within the plastic zone are provided.  相似文献   

18.
Laboratory sand-steel interface tests, using a range of sand sizes on a wide range of surface roughnesses, have been conducted using a direct shear apparatus modified to enable reliable measurements of both friction and dilation. The paper looks at the minimum interface strength after peak, termed here the postpeak strength, and assesses its dependence on roughness, density, and stress level. Its upper limit is the large displacement direct shear friction angle, related to but not equal to the critical state friction angle. When data are normalized by this value, they show linear dependence on the logarithm of relative roughness in the intermediate zone between smooth and rough. Once the roughness dependence of the postpeak strength has been allowed for, dilatant interfaces are found to follow classical stress–dilatancy relationships. It appears that there is no fundamental difference in the responses of sand-on-steel or sand-on-sand interfaces.  相似文献   

19.
Estimation of spudcan penetration resistance is an important design step to guarantee the stability and functionality of offshore mobile jack-up units. Dependence on in situ penetrometer test data to evaluate the stratigraphy and resulting spudcan capacity profile has been increased. However, this becomes difficult in intermediate soil types in which the degree of consolidation during penetration falls between the extremes of fully drained or fully undrained. In this study, a penetrometer-based methodology utilizing results from cone and T-bar penetration tests is developed. Three main steps are involved, comprising estimation of the relative penetration resistance of spudcan and cone or T-bar penetrometer under fully drained and fully undrained conditions, and then quantifying the effect of the different normalized penetration rates for spudcan and penetrometer. Values of the various correlation parameters for the proposed model are evaluated. The validity and accuracy of the proposed methodology are evaluated through case studies from centrifuge tests in clay and a field example of spudcan installation in interbedded carbonate silts and sands. The comparisons confirm the potential of the proposed methodology for interpretation of penetrometer tests and application to the prediction of foundation performance.  相似文献   

20.
Resistance Factors for Use in Shallow Foundation LRFD   总被引:1,自引:0,他引:1  
In shallow foundation design, the key improvements offered by LRFD over the traditional working stress design (WSD) are the ability to provide a more consistent level of reliability between different designs and the possibility of accounting for load and resistance uncertainties separately. In the development of LRFD, a framework for the objective, logical assessment of resistance factors is needed. Additionally, in order for LRFD to fulfill its promise for designs with more consistent reliability, the methods used to execute a design must be consistent with the methods assumed in the development of the LRFD factors. In this paper, a methodology for the estimation of soil parameters for use in design equations is proposed that should allow for more statistical consistency in design inputs than is possible in traditional methods. Resistance factors for ultimate bearing capacity are computed using reliability analysis for shallow foundations both in sand and in clay, with input parameters obtained from both the cone penetration test and the standard penetration test, and for both ASCE-7 2000 and AASHTO 1998 load factors. Resistance factor values are dependent upon the values of load factors used. Thus, a method to adjust the resistance factors to account for code-specified load factors is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号