首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Best-Fit Models to Estimate Modified Proctor Properties of Compacted Soil   总被引:1,自引:0,他引:1  
Regression models were developed to estimate the optimum moisture content and maximum dry density of clayey and fine-grained soils using physical and index properties from 30 soil samples collected in Central Italy and 41 soils described in the literature. The liquid limit of the soils analyzed ranged between 18 and 82%, the plasticity index between 1 and 51%, and specific gravity between 2.47 and 3.09. The most significant regression variables were the specific gravity and the Atterberg limits. The developed models are accurate and can be used as a simple tool to approximate the maximum dry density and optimum water content of clayey and fine-grained soils.  相似文献   

2.
This paper examines the validity of the plasticity index (PI) as a criterion for estimating the liquefaction potential of clayey soils under cyclic loading. The results of undrained cyclic stress-controlled ring-shear tests on artificial mixtures of sand with different clays saturated with water indicated that an increase in PI decreased the soil potential to liquefy, and soil with PI>15 seemed to be nonliquefiable, a finding that is in agreement with the results of other researchers. However, in this study some deviations from this relation were found when a bentonite–sand mixture was treated with solutions of different ions, thus bringing into question the effectiveness of PI as a measure of the liquefaction potential of clayey soil having a certain pore water chemistry.  相似文献   

3.
In this paper, the effects of penetration rate on cone resistance in saturated clayey soils are investigated. Shear strength rate effects in clayey soils are related to two physical processes: the increase of shear strength with increasing rate of loading and the increase of shear strength as the process transitions from undrained to drained. Special focus is placed on this second effect. Cone penetration tests were performed at various penetration rates both in the field and in a calibration chamber, and the resulting data were analyzed. The field cone penetration tests were performed at two test sites with fairly homogeneous clayey silt and silty clay layers located below the groundwater table. Additionally, tests with both cone and flat-tip penetrometers in sand-clay mixtures were performed in a calibration chamber to investigate the change in drainage conditions from undrained to partially drained and from partially drained to fully drained. A series of flexible-wall permeameter tests were conducted in the laboratory for various clayey sand mixtures prepared at various mixing ratios in order to obtain values of the coefficient of consolidation, which is required to estimate the penetration rates below which penetration is drained and above which penetration is undrained. A correlation between cone resistance and drainage conditions was established based on the results of the calibration chamber and field penetration tests.  相似文献   

4.
In the present note, the susceptibility to necking of a subsurface barrier installed by the vibrating beam method in fine-grained soils is investigated by physical model tests. Two soils are investigated, a clayey soil and a silty soil. The model soil is prepared by moist tamping. The recipe of slurry in the model tests is widely used in the foundation engineering industry. The dynamic loading exerted by the vibration of the adjacent panel is simulated by a shake table. The test results show that soil plasticity and water content are the major influence factors on the susceptibility to necking. The plasticity index can be used as an indicator for the susceptibility to necking of subsurface barrier installed by the vibrating beam method in fine-grained soils. Other influence factors on necking are also investigated and their implications for practice are discussed.  相似文献   

5.
Failure Criterion for Cross-Anisotropic Soils   总被引:4,自引:0,他引:4  
Experimental evidence and analyses of results of three-dimensional (3D) tests show that the shape of the failure surface for soils is influenced by the intermediate principal stress, shear banding, and cross anisotropy. Presented here is a formulation of a general 3D failure criterion for cross-anisotropic soils for both nonrotating and rotating stresses. The formulation relates the loading direction to the principal directions of the cross-anisotropic microstructure of the soil. The criterion is based on a function of stress, previously used as the 3D failure criterion for isotropic frictional materials, which is set equal to a scalar that varies over a sphere. The formulation is specialized for true triaxial tests and torsion shear tests and determination of material parameters is demonstrated. The failure criterion for cross-anisotropic soils is compared with experimental results from the literature to show that it is able to capture the conditions obtained in true triaxial tests without stress rotations as well as the conditions in torsion shear tests performed to study effects of stress rotation. Sets of data from some classic true triaxial tests are reinterpreted to show their true cross-anisotropic behavior.  相似文献   

6.
Compaction’s Impacts on Urban Storm-Water Infiltration   总被引:1,自引:0,他引:1  
Soil infiltration is a critical component of most urban runoff models. However, it has been well documented that, during urbanization, soils are greatly modified, especially in relation to soil density. Increased soil compaction results in soils that do not behave in a manner predicted by traditional infiltration models. Laboratory and field tests were conducted to investigate detailed infiltration behavior of disturbed urban soils for a variety of soil textures and levels of compaction. The results from traditional permeability tests on several soil groups showed that, as expected, the degree of compaction greatly affected the steady-state infiltration rate. The field tests highlighted the importance of compaction on the infiltration rate of sandy soils, with minimal effect seen from antecedent moisture conditions. For the clayey soils, however, both the compaction level and antecedent moisture conditions were important in determining the steady-state infiltration rate.  相似文献   

7.
Volume changes due to wetting may occur in naturally deposited soils as well as earthen construction (e.g., compacted fills or embankments). Depending on the stress level, some soils exhibit increase in volume upon wetting (swell) while others may exhibit decrease in volume upon wetting (collapse). The work described in this paper focused on wetting-induced volume changes in compacted soils. Motivation for this work stemmed from observations of earthen structures that exhibit problematic behavior under wetting conditions, even though soils were compacted to engineering specifications (i.e., at or above minimum density and within moisture content ranges). Not only is this problematic behavior a concern but also the laboratory tests used to predict settlement of constructed facilities may not properly model the actual behavior of soil compacted under field conditions. For example, settlements experienced by compacted fills may be different from settlement predictions based on one-dimensional oedometer tests. These differences are partly related to the variations in the soil structure in tested specimens that arise because soil clods compacted in the laboratory are smaller than soil clods compacted in the field. The term “soil structure” includes the combined effects of soil fabric and interparticle forces. “Fabric” generally refers to the geometric arrangement of particles, whereas interparticle forces include physical and physicochemical interactions between particles. The soil structure in this case is associated with specimen preparation methods and is influenced by several factors including soil composition (including pore water chemistry), compaction method, clod sizes, initial moisture condition of clods, dry density or void ratio, and compaction moisture content. A laboratory research study was conducted to investigate the influence of variations in clod-size and structure on one-dimensional volume change, with emphasis on wetting-induced volume change, for nine different fine-grained soils. The results of the study suggest that the influence of structure in one-dimensional oedometer tests depends on soil type and nature of the clods in the compacted soil. Clayey soils appear to be influenced more by differences in structure, whereas silts or clayey sands of low plasticity (PI<10) do not appear to suffer as much from structure effects in one-dimensional oedometer tests. This is attributed to more extensive clod development in clayey soils. Furthermore, the moisture condition of clods appears to have an important influence on volume change behavior.  相似文献   

8.
The coexistence of heavy metals and polycyclic aromatic hydrocarbons (PAHs) at many of the contaminated sites poses a severe threat to public health and the environment. Very few technologies, such as soil washing/flushing and stabilization/solidification, are available to remediate such sites; however, these technologies are ineffective and expensive to treat contaminants in low permeability clayey soils. Previous studies have shown that electrokinetic remediation has potential to remove heavy metals and organic compounds when they exist individually in clayey soils. In the present study, the feasibility of using surfactants and organic acids sequentially and vice versa during electrokinetic remediation was evaluated for the removal of both heavy metals and PAHs from clayey soils. Kaolin was selected as a model clayey soil and it was spiked with phenanthrene and nickel at concentrations of 500 mg/kg dry each to simulate typical field mixed contamination. Bench-scale electrokinetic experiments were performed with the sequential anode conditioning with: (1) 1 M citric acid followed by 5% Igepal CA-720; (2) 1 M citric acid followed by 5% Tween 80; and (3) 5% Igepal CA-720 followed by 1 M citric acid. A periodic voltage gradient of 2 V/cm (with 5 days on and 2 days off cycles) was applied in all the tests. A removal of about 96% of phenanthrene was observed in the test with 5% Igepal CA-720 followed by 1 M citric acid sequence. Most of the nickel (>90%) migrated from anode to cathode in this test; however, it precipitated in the section very close to the cathode due to the high pH conditions. Conversely, the removal efficiency of nickel was about 96 and 88% in the tests with 1 M citric acid followed by 5% Igepal CA-720 sequence and 1?M citric acid followed by 5% Tween 80 sequence, respectively. However, the migration and removal efficiency of phenanthrene in both of these tests were very low. Overall, it can be concluded that the sequential use of 5% Igepal CA-720 followed by 1 M citric acid may be an effective remedial strategy to remove coexisting heavy metals and PAHs from clayey soils.  相似文献   

9.
The laboratory and field test data on the response of piles under the combined action of vertical and lateral loads is rather limited. The current practice for design of piles is to consider the vertical and lateral loads independent of each other. This paper presents some results from three-dimensional finite-element analyses that show the significant influence of vertical loads on a pile’s lateral response. The analyses were performed in both homogeneous clayey soils and homogeneous sandy soils. The results have shown that the influence of vertical loads on the lateral response of piles is to significantly increase the capacity in sandy soils and marginally decrease the capacity in clayey soils. In general, it was found that the effect of vertical loads in sandy soils is significant even for long piles, which are as long as 30 times the pile width, while in the case of clayey soils, the effect is not significant for piles beyond a length of 15 times the width of the pile. The design bending moments in the laterally loaded piles were also found to be dependent on the level of vertical load on the piles.  相似文献   

10.
The influence of amorphous clay-size materials on geotechnical engineering properties is recognized only for soils developed from volcanic ash under extremely wet, alumina-rich soil environments (called Andisols). The objective of this study was to quantify the amorphous clay-size materials in less weathered volcanic soils that are rich in silica, and to determine the influence of the amorphous materials on plasticity and shrink-swell behavior of these soils. Soil and weathered rock samples were taken from a slow-moving landslide site in Honolulu. Quantification of amorphous and crystalline clay content was performed with x-ray diffraction and the Rietveld method. Atterberg limits and shrink-swell potential of the soil samples were determined. The results showed that clay-size fraction in both soil and weathered rock samples were predominantly amorphous (55–74% in soil and 48–63% in weathered rock). Smectite and halloysite were the primary crystalline clay minerals, constituting about 15–30% of the clay fraction in soils. Atterberg limits of the soil ranged from 65 to 135 for liquid limit, from 30 to 40 for plastic limit, and 9 to 25 for shrinkage limit. Volumetric free swell ranged from 2 to 21%. The plasticity and shrink-swell potential increased with increasing the content of amorphous clay-size materials in the soil. Air drying and oven drying did not significantly change the plasticity. The study concluded that silica-rich amorphous materials dominate the clay mineralogy of the soils studied, resulting in the plasticity and shrink-swell behavior similar to that of smectite-rich soils and distinct from that of Andisols.  相似文献   

11.
A series of undrained cyclic torsional simple shear tests using hollow cylindrical torsional shear apparatus was carried out to investigate the dynamic shear moduli and damping properties of clayey specimens with various sand contents and plasticity indices. The clayey soils used were collected from various sites along the coast of west Japan. Among these clayey soils, a clay sample with intermediate plasticity and another with high plasticity were mixed with silica sand at different proportions in order to examine the dynamic properties of sand-clay mixtures. In addition, experiments were carried out on undisturbed and remolded natural clay specimens with various plasticities. The effects of plasticity, loading frequency and confining pressure on the strain dependent normalized shear modulus and damping ratio were examined. Based on the results, empirical correlations for predicting the normalized shear modulus and damping ratio of remolded sand-clay mixtures at various shear strain levels were proposed.  相似文献   

12.
In this work, oedometer tests were used to examine the effects of ethanol-gasoline blends on the consolidation characteristics of a kaolinitic soil from northwestern Spain. As the fraction of ethanol in blends increases, the equivalent liquid limit of soil decreases, showing a dividing point for blends containing about 85% of ethanol. By means of a database of compression indexes of remolded clayey soils mixed with differing kinds of alcohol and petroleum hydrocarbon contaminants, a multivariable model for estimating the compression index of the contaminated soil is presented, on the basis of the virgin compression index, normalized liquid limit, and normalized pore fluid viscosity. The model is valid only for percentages of active clays up to 10–15% in weight in kaolinitic soil. The authors would like to encourage others to further validate and refine the approach, which may be useful for preliminary estimation of the compression index of contaminated soils, reducing operators’ risk of inhaling vapors released by the ethanol-gasoline blends while performing the test and also reducing damage to conventional oedometer equipment.  相似文献   

13.
Subsurface Characterization at Ground Failure Sites in Adapazari, Turkey   总被引:4,自引:0,他引:4  
Ground failure in Adapazari, Turkey during the 1999 Kocaeli earthquake was severe. Hundreds of structures settled, slid, tilted, and collapsed due in part to liquefaction and ground softening. Ground failure was more severe adjacent to and under buildings. The soils that led to severe building damage were generally low plasticity silts. In this paper, the results of a comprehensive investigation of the soils of Adapazari, which included cone penetration test (CPT) profiles followed by borings with standard penetration tests (SPTs) and soil index tests, are presented. The effects of subsurface conditions on the occurrence of ground failure and its resulting effect on building performance are explored through representative case histories. CPT- and SPT-based liquefaction triggering procedures adequately identified soils that liquefied if the clay-size criterion of the Chinese criteria was disregarded. The CPT was able to identify thin seams of loose liquefiable silt, and the SPT (with retrieved samples) allowed for reliable evaluation of the liquefaction susceptibility of fine-grained soils. A well-documented database of in situ and index testing is now available for incorporating in future CPT- and SPT-based liquefaction triggering correlations.  相似文献   

14.
A new method of estimating the permeability of soils using an acoustic technique is proposed in this technical note. Biot’s coupled theory of mixtures from the mid-1950s, which addresses the relationship between the permeability of saturated soils and the characteristic frequency of elastic waves, is used. The characteristic frequency is determined from the attenuation versus frequency curves obtained by acoustic sweep tests. This study presents the experimental technique for measuring the characteristic frequency of soils and calculation procedure for estimating the permeability of sandy soils. This technical note holds discussion for silty or clayey soils.  相似文献   

15.
Characterization of Failure in Cross-Anisotropic Soils   总被引:3,自引:0,他引:3  
Drained true triaxial tests on dense Santa Monica Beach sand deposited with a cross-anisotropic fabric have been performed to study the failure condition in the principal stress space. The failure surface was assumed to be symmetric around the vertical axis (on the octahedral plane of the principal stress space), but varying as a function of the Lode angle. Data from previously performed consolidated-undrained true triaxial tests on San Francisco Bay Mud and data from triaxial compression, triaxial extension, and plane strain tests on Toyoura sand showed similar behavior in terms of effective stresses. A three-dimensional failure criterion is proposed for characterization of failure in cross-anisotropic soils, under commonly occurring conditions when loading and depositional directions coincide and no significant rotation of principal stresses occur. This cross-anisotropic criterion is developed using a coordinate rotation of the principal stress space and utilization of an existing isotropic failure formulation. Derivation of the three required parameters is explained and illustrated. The proposed criterion is compared with various experimental results; and it is demonstrated that the failure criterion for cross-anisotropic soils captures the experimental behavior with good accuracy.  相似文献   

16.
Viscoplastic Cap Model for Soils under High Strain Rate Loading   总被引:1,自引:0,他引:1  
A viscoplastic cap model of the Perzyna type was developed for simulating high strain rate behaviors of soils. An associative viscous flow rule was used to represent time-dependent soil behaviors. The viscoplastic cap model was validated against experimental data from static and dynamic soil tests. The model was also compared with soil behaviors under creep and stress relaxation with good agreement. However, the model was unable to represent tertiary creep where strain softening became significant. The model was subsequently integrated into LS-DYNA for finite-element simulations of high strain rate behaviors of sandy and clayey soils in explosive tests. The significance of strain rate effect on the soil responses is presented herein. It is concluded that the viscoplastic cap model is adequate for simulations of soil behaviors under high strain rate loading, creep, and stress relaxation, covering a wide range of time-dependent problems.  相似文献   

17.
There is considerable uncertainty in the determination of effective stress strength parameters of cemented soils from undrained triaxial tests. Large negative excess pore pressures are generated at relatively large strains (typically 4–5% for cemented silty sand) in isotropically consolidated undrained (CIU) tests, which results in gas coming out of solution during shear and significant variability in the measured peak deviator stress. In this study, different failure criteria for weakly cemented sands were evaluated based on the results of CIU and isotropically consolidated drained triaxial compression tests conducted on samples of artificially cemented sand. The use of = 0 as a failure criterion eliminates the variability between the undrained tests and also ensures that the mobilized failure strength is not based on the highly variable negative excess pore pressures. In addition, the resulting strains to failure are comparable to the strains to failure for the drained tests. Mohr-Coulomb strength parameters thus estimated from the undrained tests are generally lower than strength parameters obtained from drained tests, and the difference between the failure envelopes from undrained tests increases as the level of cementation increases. This divergence is attributed to differences in the stiffness of the cemented soil under the different loading conditions. The stiffness under undrained loading conditions decreases with increasing cementation due to an increase in the generation of positive excess pore pressure at low strains.  相似文献   

18.
The filter design criteria in practice are currently based on laboratory tests that were carried out on uniform base soil and filter materials. These criteria mostly involve specific particle size ratios, where the system of base soil and filter is represented by some characteristic particle sizes. Consequently, these criteria have limitations when applied to nonuniform materials. In filters, it is the constriction size rather than the particle size that affects filtration. In this paper, a mathematical procedure to determine the controlling constriction size is introduced, and subsequently, a constriction-based retention criterion for granular filters is presented. The model also incorporates the effect of nonuniformity of base soil in terms of its particle size distribution, considering the surface area of the particles. The proposed retention criterion is verified based on experimental data taken from past studies plus large-scale filtration tests carried out by the authors. The model successfully and distinctly demarcates the boundary between effective and ineffective filters in the case of cohensionless base soils.  相似文献   

19.
Construction on expansive soils is challenging and thus prone to some problems and litigation. The engineering community makes extensive use of local experience and empirical procedures to address these problems. Although there has been extensive study of expansive soils and foundations on expansive soils, data related to performance of residential structures are limited in general and limited in the Phoenix area, in particular. In this study, an overview of the Phoenix Valley, Arizona, geotechnical practice and foundation performance related to residential structures on expansive clays, was developed through surveys and interviews with geotechnical engineers, structural engineers, and homebuilders. Using data obtained from files of Phoenix area geotechnical firms and government agencies, the existing Natural Resource Conservation Service map showing expansive soil locations throughout the Phoenix region was updated through the use of correlation developed in this study relating expansion index to common soil index properties such as Atterberg limits and percent passing the No. 200 sieve. Files of forensic investigations linked to expansive soil regions were made available for this study by several geotechnical engineering firms, and Phoenix Valley areas where forensic investigations have been identified, were mapped for comparison to regions identified in the updated map as having expansive soils. Comparison of the forensic investigation map to the updated map of expansive clay locations revealed that most of the forensic investigations were in regions identified with clays labeled as high to moderately high expansion potential, with a few forensic investigations in regions of medium expansion potential. Finally, unsaturated flow analyses were conducted for an Arizona expansive clay profile for two very different landscaped conditions of well-irrigated turf and desert landscape. The results of the numerical analyses were consistent with the reported observations and modes of failure identified through the surveys and interviews conducted with engineering and homebuilder professionals, including the finding that site drainage was found to be extremely important to good foundation performance, regardless of the type of landscape selected.  相似文献   

20.
Assessment of the Liquefaction Susceptibility of Fine-Grained Soils   总被引:6,自引:0,他引:6  
Observations from recent earthquakes and the results of cyclic tests indicate that the Chinese criteria are not reliable for determining the liquefaction susceptibility of fine-grained soils. Fine-grained soils that liquefied during the 1994 Northridge, 1999 Kocaeli, and 1999 Chi-Chi earthquakes often did not meet the clay-size criterion of the Chinese criteria. Cyclic testing of a wide range of soils found to liquefy in Adapazari during the Kocaeli earthquake confirmed that these fine-grained soils were susceptible to liquefaction. It is not the amount of “clay-size” particles in the soil; rather, it is the amount and type of clay minerals in the soil that best indicate liquefaction susceptibility. Thus plasticity index (PI) is a better indicator of liquefaction susceptibility. Loose soils with PI<12 and wc/LL>0.85 were susceptible to liquefaction, and loose soils with 120.8 were systematically more resistant to liquefaction. Soils with PI>18 tested at low effective confining stresses were not susceptible to liquefaction. Additionally, the results of the cyclic testing program provide insights regarding the effects of confining pressure, initial static shear stress, and stress-path on the liquefaction of fine-grained soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号