首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
以活性炭吸附和Fenton氧化技术处理含盐有机废水。结果表明,活性炭预处理过程中,当废水pH为6时,投加8 g/L的活性炭,30 min后COD去除率达到66.8%,活性炭预处理后,投加12 mmol/L FeSO_4·7H_2O、240 mmol/L30%H_2O_2,30 min后COD去除率达到82.4%;Fenton氧化技术直接处理废水时,调节废水pH为6,FeSO_4·7H_2O和30%H_2O_2分别为15 mmol/L和300 mmol/L时,COD去除率为41.3%,继续投加8 g/L活性炭,30 min后COD去除率达到78.8%。  相似文献   

2.
采用Fenton-混凝法对重庆市垃圾填埋场的垃圾渗滤液进行预处理。通过响应面优化设计Fenton氧化处理垃圾渗滤液工艺,建立Box-Behnken数学模型,考察了pH、H_2O_2投加量和FeSO_4·7H_2O投加量对垃圾渗滤液化学需氧量(COD)的影响。结果表明:在pH、H_2O_2投加量和FeSO_4·7H_2O投加量分别为3.2、1.1%、0.4%时,Fenton法预处理垃圾渗滤液的最佳COD去除率为59.06%。  相似文献   

3.
采用混凝-Fenton法处理盘锦油田含油废水,分析PAC用量、PAM用量、pH值、H_2O_2的投加量、FeSO_4·7H2O的投加量、反应温度和反应时间等各因素对COD_(Cr)去除效果的影响,并确定最佳的处理条件。结果表明,混凝试验中PAC的投加量为200 mg/L和PAM的投加量为0.6 mg/L时效果最好;Fenton反应的最佳条件为:pH值为4,H_2O_2投加量为37.8 mmol/L,FeSO_4·7H_2O投加量为3.78 mmol/L,反应温度为75℃,时间为30 min,此时Fenton反应进行最彻底,含油废水COD_(Cr)去除率最高。  相似文献   

4.
本文采用Fenton试剂对钕铁硼废料回收废水处理进行试验研究,试验研究了不同初始pH、不同反应时间、不同FeSO_4·7H_2O投加量以及不同H_2O_2/投加量对CODcr去除率的影响,试验研究表明在pH为3-5、反应时间为2h、FeSO_4·7H_2O投加量0.006mol/L,H_2O_2投加量为2mL/L时,废水CODcr去除率可以达到70%以上。由于废水的酸度和Fe2+浓度非常大,采用将废水进行加碱混凝沉淀的方法可以去除废水中大部分可沉淀的阳离子和胶体态的有机物,减轻后续Fenton氧化的压力。  相似文献   

5.
Fenton试剂处理抗生素厌氧处理出水的试验研究   总被引:5,自引:2,他引:3  
采用Fenton试刺处理经厌氧处理后的抗生素废水,通过正交试验确定其主要影响因素的最佳水平组合为:FeSO_4·7H_2O投加量为3mmol(200mL厌氧出水中),进水pH为3.0,[H_2O_2]:[Fe~(2+)]为12:1,反应时间为2h.在正交试验基础上,通过单因子分析确定了系统的最佳运行条件.在FeSO_4·7H_2O投加量为3mmol(200mL厌氧出水中)、进水pH为3.0、[H_2O_2]:[Fe~(2+)]为8:1、反应时间为2h的条件下,对COD的去除率可以达到72%,处理出水BOD_5/COD为0.45.  相似文献   

6.
《应用化工》2016,(10):1917-1921
对皮革鞣制废液采用分步投加FeSO_4·7H_2O、H_2O_2法进行预处理,考察了FeSO_4·7H_2O、H_2O_2的投加方式与投加量、反应温度、pH值、反应周期等的影响。结果表明,最佳工艺参数为:温度50℃,pH值5,FeSO_4·7H_2O投加量5 mmol/L,H_2O_2用量50 mmol/L,反应周期3 h。在此工艺条件下,可使废液色度从40 000倍降为10倍,COD、总铬和Cr~(6+)浓度分别从2 700,19.27,18.78 mg/L降为426.7,0.162,0.15 mg/L,达到了《制革及毛皮加工工业水污染物排放标准》(GB 30486—2013)要求。方法主要是利用先投加FeSO_4·7H_2O还原Cr~(6+),搅拌反应一段时间后,再投加H_2O_2形成Fenton试剂。其去除机制有别于传统Fenton试剂,主要是针对皮革鞣制废液中的Cr~(6+)浓度高这一水质特色,先用Fe~(2+)还原Cr~(6+),并利用Cr_2O_72-的强氧化性,在酸性条件H+与H_2O_2的共同作用下,形成Fe~(2+)、Fe~(3+)、Cr~(3+)、Cr~(6+)、H_2O_2、·OH、OH-等离子的共氧化和共沉淀体系,实现色度、Cr~(6+)、COD和总铬的同步去除。  相似文献   

7.
采用Fenton试剂法对环氧树脂生产废水进行处理。考察了pH值、反应时间、FeSO_4·7H_2O及H_2O_2投加量对废水COD_(Cr)去除效果的影响,研究了反应出水pH值与COD_(Cr)去除率之间的关系。通过试验确定了Fenton试剂法处理环氧树脂生产废水的最佳反应条件:pH值为3,反应时间为75 min,FeSO_4·7H_2O投加量为21.6 mmol/L,H_2O_2投加量为0.495 mol/L。在此条件下,废水COD_(Cr)去除率为59.9%,m(BOD_5)/m(COD_(Cr))从0.14提高到0.37,环氧树脂生产废水的可生化性大大提高;试验结果还表明,环氧树脂生产废水出水pH值与COD_(Cr)去除率具有一定联系。  相似文献   

8.
以Fenton氧化法对4-AA制药废水进行预处理,结果表明,在初始pH=3.5,30%H_2O_2投加量4.0ml/L,FeSO_4·7H_2O投加量为1.5g/L时,搅拌反应1.5h,COD去除率最高,可达50%~55%,从8000~11000mg/L下降到5000mg/L左右。出水可生化性从0.25提高至0.37,为后续生物处理提供了有利条件。  相似文献   

9.
目前,企业采用高锰酸钾氧化法处理酚醛树脂废水,效果不佳,不但引入了重金属锰元素,造成锰的二次污染,还受温度影响大,冬季氧化能力较差。且高锰酸钾价格昂贵,处理成本较高。为此,本文探讨了采用电Fenton法处理企业高浓度酚醛树脂废水,并对影响COD及除率的各种因素,包括初始电压值、FeSO_4·7H_2O投加量、H2O2投加量等进行了研究。结果表明,电Fenton的最优条件为pH4~5,FeSO_4·7H_2O为2g/L,30%H2O2为1g/L,电压为3V。反应时间为30min。COD去除率可达63%以上。  相似文献   

10.
采用Fenton法处理配位含镍废水,并研究了反应温度、废水初始pH值、H_2O_2的质量浓度、FeSO_4·7H_2O与H_2O_2的质量比、初始EDTA的质量对废水处理效果的影响。结果表明:在反应温度为45℃、反应时间为45 min、初始pH值为3、H_2O_2的质量浓度为10g/L、FeSO_4·7H_2O与H_2O_2的质量比为0.06的条件下,含镍废水中Ni~(2+)的去除率达到94.14%。  相似文献   

11.
利用Fenton+MnO_2+A/O组合工艺处理过氧化甲乙酮生产废水。在Fenton+MnO_2预处理阶段对影响废水COD去除率的主要因素进行了考察,得到反应的最佳条件:p H=2.7,30%H_2O_2投加量为0.1 L/L,FeSO_4·7H_2O投加量为5 g/L,MnO_2投加量为8 g/L,MnO_2氧化反应时间为45 min。废水经Fenton+MnO_2氧化预处理后可生化性由0.14提高到了0.25左右。废水经Fenton+MnO_2+A/O组合工艺处理后,出水COD稳定低于500 mg/L。  相似文献   

12.
尤克非  石健  张彦 《广东化工》2014,(1):98-99,105
采用Fenton氧化、超声辐射和超声-Fenton氧化三种方法处理含阴离子表面活性剂SDS的弱酸艳红B染料废水,考察溶液初始pH、H2O2投加量、FeSO4投加量、反应时间和超声功率对废水色度和COD的影响。结果表明:单独超声对废水色度和COD的去除没有效果,超声-Fenton氧化法对废水COD的去除效果明显优于Fenton氧化法。在pH 2.5,温度50℃,H2O2投加量4 mL/L,FeSO4投加量300 mg/L,反应时间90 min及超声功率400 W的条件下,废水色度去除率为98%,COD去除率为72%,比单独Fenton氧化法COD去除率提高25%。  相似文献   

13.
Fenton试剂预处理丁硫克百威废水的实验研究   总被引:1,自引:0,他引:1  
通过单因素实验考察Fenton试剂预处理丁硫克百威生产废水,研究了反应初始pH值、七水合硫酸亚铁投加量、双氧水投加量和反应时间等因素对废水COD去除率和呋喃酚去除率的影响。结果表明:Fenton法预处理丁硫克百威废水的优化条件是pH=3.0、七水合硫酸亚铁投加量为5.6 g/L、双氧水投加量为25.0 mL/L、反应时间为120 min,在此条件下废水的COD去除率为60.6%,呋喃酚去除率为74.3%,BOD5/COD从0.07上升至0.36,改善了废水水质,保障了后续生化处理条件,为企业废水处理提供了切实可行的理论依据。  相似文献   

14.
周志明  莫立焕  王玉峰 《水处理技术》2012,38(2):127-129,132
采用Fenton氧化法对苇浆造纸厂二级生化出水进行深度处理。探讨了废水初始pH、H2O2投加量、FeSO4和PAM用量、反应温度和时间对COD和色度去除效果的影响。结果表明,当体系pH为4、H2O2投加量为10 mmol.L-1、FeSO4投加量为2.5 mmol.L-1、PAM用量为0.75 mg.L-1、反应温度为20℃和时间为40 min时,COD可降至60 mg.L-1以下,色度去除率在90%以上。  相似文献   

15.
Fenton氧化-混凝法处理DSD酸生产废水   总被引:1,自引:1,他引:0  
采用Fenton氧化-混凝法对DSD酸还原段生产废水进行处理,得出最佳Fenton氧化条件:pH值为3、H2O2投加量为1 mL/L(分3次投加)、FeSO4.7H2O投加量为200 mg/L、反应时间为45 min;混凝条件:pH值为10,聚丙烯酰胺投加量为3 mg/L。试验结果表明,该组合工艺处理COD的质量浓度为516 mg/L、色度为500倍的废水,其COD、色度的去除率分别达到81.0%、98.0%。  相似文献   

16.
超声波强化Fenton试剂处理哌嗪废水的研究   总被引:1,自引:0,他引:1  
采用超声与Fenton两种高级氧化技术联合处理哌嗪废水,取得了满意的效果。实验结果表明,超声波和Fenton试剂对哌嗪废水的催化降解存在协同效应。考察了初始pH、超声功率、Fenton试剂用量等因素对其CODCr去除效果的影响,并用正交试验优化降解条件。当超声波功率为70 W,初始pH为3.7,H2O2浓度为5.0 mmol/L,FeSO4浓度为0.15 mmol/L时,对哌嗪废水CODCr的去除率为99.9%。处理后出水CODCr<50 mg/L,达到了《污水综合排放标准》(GB 8978—1996)一级排放标准。  相似文献   

17.
首先用活化粉煤灰预处理焦化废水,COD去除率最大可达17%。然后利用Fenton试剂和PAM联合作用对焦化废水深度处理,单因素实验和正交试验结果表明,当pH=5,H2O2投加量为3mL/L,FeSO4·7H2O的投加量为6g/L,PAM的投加量为0.5g/L,反应时间为2h,处理效果最佳,COD和色度的去除率分别可达去90.8%和91.25%。各因素对COD去除率影响的强弱顺序为:PAM投加量〉pH值〉H2O2投加量〉FeSO4·7H2O投加量。  相似文献   

18.
周鸣  许景明  耿丹丹 《广州化工》2014,(10):80-82,91
利用混凝-Fenton法对中晚期垃圾渗滤液进行预处理研究。首先以PAC为混凝剂,PAM为助凝剂对垃圾渗滤液进行混凝处理,然后对混凝后渗滤液进行Fenton氧化。考察混凝剂用量,起始pH值,H2O2/FeSO4·7H2O投加比,Fenton试剂投药量和搅拌速度对垃圾渗滤液COD去除的影响,并进行正交试验分析。结果表明:混凝法的最佳投药量为1 L渗滤液投加1.5 g PAC和5 mg PAM;Fenton法的最佳条件为:起始pH值为3,H2O2/FeSO4·7H2O投加比为8∶1,Fenton试剂投药量为135 g/L,搅拌速度为150 r/min;各因素对Fenton试验影响大小为:起始pH值Fenton试剂投药量搅拌速度。在最佳条件下,混凝-Fenton法对垃圾渗滤液COD去除率可达91.41%。  相似文献   

19.
王会芳  杨瑞洪 《广州化工》2014,(17):113-114,203
采用Fenton法对高浓度制药废水进行预处理实验。主要考察了Fenton试剂氧化法预处理高浓度制药废水的影响因素,主要讨论pH值、FeSO4·7H2O投加量、反应时间对Fenton氧化工艺对制药废水中CODCr处理效果的影响。实验结果显示,pH值为4、反应时间100 min、FeSO4·7H2O投加量为0.024 mol/L、H2O2/Fe2+投加比为11∶1,CODCr处理去除率为52.1%,可生化性BOD/COD为0.57,效果最为理想。  相似文献   

20.
Fenton试剂处理环氧氯丙烷生产废水研究   总被引:5,自引:3,他引:2  
采用Fenton试剂法处理环氧氯丙烷生产废水。分别采用单因素和正交试验方法考察了反应温度、pH值、反应时间、FeSO4和H2O2投加量等因素对COD去除率的影响,以及各因素之间的关系。试验结果表明,反应温度为60℃、pH值为3.0、H2O2投加量为97.9mmol/L,FeSO4投加量为1.0mmol/L,反应时间为75min为最佳反应条件,且各影响因素中H2O2用量对COD去除率影响最大,FeSO4用量的影响次之,反应时间的影响最小。试验证实Fenton试剂对废水中的难降解有机物有较高的除去效率,可作为难降解有机物废水生物处理的前处理方法进行推广和使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号