首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
基于分数阶Fourier变换的数字图像加密算法研究*   总被引:1,自引:0,他引:1  
基于分数阶Fourier变换和混沌,提出了一种数字图像加密方法。具体算法为:先对图像进行混沌置乱,再进行X方向的离散分数阶Fourier变换;然后在分数阶Fourier域内作混沌置乱,再进行Y方向的离散分数阶Fourier变换;最后将加密图像的实部与虚部映射到RGB,形成可传输的彩色加密图像。实验结果表明,该加密算法具有很好的安全性,在信息安全领域有较好的应用前景和研究价值。  相似文献   

2.
The multiple-parameter fractional Fourier transform   总被引:1,自引:0,他引:1  
The fractional Fourier transform (FRFT) has multiplicity, which is intrinsic in fractional operator. A new source for the multiplicity of the weight-type fractional Fourier transform (WFRFT) is proposed, which can generalize the weight coefficients of WFRFT to contain two vector parameters m,n ∈ Z^M . Therefore a generalized fractional Fourier transform can be defined, which is denoted by the multiple-parameter fractional Fourier transform (MPFRFT). It enlarges the multiplicity of the FRFT, which not only includes the conventional FRFT and general multi-fractional Fourier transform as special cases, but also introduces new fractional Fourier transforms. It provides a unified framework for the FRFT, and the method is also available for fractionalizing other linear operators. In addition, numerical simulations of the MPFRFT on the Hermite-Gaussian and rectangular functions have been performed as a simple application of MPFRFT to signal processing.  相似文献   

3.
提出一种基于离散分数傅里叶变换(DFRFT)的二维工程图数字水印算法。该算法分块提取工程图中线段的相对坐标线构造复值信号量,将水印嵌入复值信号量的分数傅里叶变换频谱(FRT)中。实验表明,该算法对平移、旋转、缩放、部分实体删除或添加等攻击具有良好的鲁棒性,同时具有良好的安全性。  相似文献   

4.
Research progress on discretization of fractional Fourier transform   总被引:5,自引:1,他引:5  
As the fractional Fourier transform has attracted a considerable amount of attention in the area of optics and signal processing, the discretization of the fractional Fourier transform becomes vital for the application of the fractional Fourier transform. Since the discretization of the fractional Fourier transform cannot be obtained by directly sampling in time domain and the fractional Fourier domain, the discretization of the fractional Fourier transform has been investigated recently. A summary of discretizations of the fractional Fourier transform developed in the last nearly two decades is presented in this paper. The discretizations include sampling in the fractional Fourier domain, discrete-time fractional Fourier transform, fractional Fourier series, discrete fractional Fourier transform (including 3 main types: linear combination-type; sampling-type; and eigen decomposition-type), and other discrete fractional signal transform. It is hoped to offer a doorstep for the readers who are interested in the fractional Fourier transform.  相似文献   

5.
针对传统的自然混沌系统安全性低的问题,提出了量子混沌和分数阶Fourier变换的图像加密算法。通过引入量子Logistic混沌映射,解决了Logistic映射存在的周期窗口、伪随机和非周期性不好等缺陷,还改善了计算机进行浮点数运算丢失精度的问题。同时将混沌系统和分数阶Fourier变换相结合,实现了介于空间域和频域的分数域置乱,克服了传统一些方法只在单一域变换和单纯使用某一种方案而导致参数变量少,系统结构简单,直方图不均匀等缺点。实验和仿真结果表明,该算法具有密钥空间大,计算复杂度低,敏感性强等优点,能够有效地抵御统计分析攻击。  相似文献   

6.
康菁菁  张汗灵 《计算机应用》2009,29(6):1648-1676
提出了一种基于二维工程图的水印算法。该方法提取二维工程图中线段的相对坐标向量,构造一维复数信号。通过分数傅里叶变换得到复数信号的变换系数,根据水印的大小和分数傅里叶变换系数的之间的关系,对变换系数的幅值进行调整来嵌入水印。该方法是盲水印算法,在提取水印时不需要原始工程图。实验表明,该算法对平移、旋转、缩放等攻击具有良好的鲁棒性,同时具有良好的安全性。  相似文献   

7.
8.
The paper reveals the time-frequency symmetric property of the weighted-type fractional Fourier transform (WFRFT) by investigating the original definition of the WFRFT, and proposes a discrete algorithm of the WFRFT based on the weighted discrete Fourier transform (WDFT) algorithm with constraint conditions of the definition of the WFRFT and time-domain sampling. When the WDFT is considered in digital computation of the WFRFT, the Fourier transform in the definition of the WFRFT should be defined in frequency (Hz) but not angular frequency (rad/s). The sampling period Δt and sampling duration T should satisfy Δt = T/N = 1/N(1/2) when N-point DFT is utilized. Since Hermite-Gaussian functions are the best known eigenfunctions of the fractional Fourier transform (FRFT), digital computation based on eigendecomposition is also carried out as the additional verification and validation for the WFRFT calculation.  相似文献   

9.
作为时频分析方法的一种,谱图对多分量信号分析时受交叉项影响,特别是当信号相隔很近时尤为严重,而且频率分辨率会受影响。给出了结合分数阶Fourier变换(FrFT)对多分量信号进行谱图分析的方法。首先利用分数阶二阶矩极值点而找到相应的最优旋转阶数,对所给多分量信号按此阶数做分数阶Fourier变换,再在此基础上做谱图分析。仿真实例表明,该方法对初始频率、调频率很接近的多分量的chirp信号能有效识别,交叉项可得到较好的抑制。  相似文献   

10.
针对现今分数阶Fourier变换和传统混沌加密的不足,提出了一种基于二维离散分数阶Fourier变换的双混沌图像加密算法。该算法首先借助明文图像信息生成辅助密钥矩阵与输入密钥相结合得到混沌序列,再将生成的中间密文作为二维离散分数阶Fourier变换输入,最后进行置乱操作,使得明文信息得到很好的隐藏。通过实验仿真表明,该算法不仅能有效抵抗统计特征攻击、差分攻击,而且大大改善经传统分数阶Fourier变换后直方图像不平滑的缺点,达到很好的加密效果。  相似文献   

11.
针对传统的基于傅里叶变换的两步运动补偿SAR成像算法在处理非平稳运动误差时效果不显著的问题,提出了基于分数阶傅里叶变换(Fr FT)的两步运动补偿CS算法,以期消除距离向运动误差的影响,从而获得高质量的SAR图像。仿真结果和基于实测SAR数据的成像结果都表明,所提算法能很好地消除距离向运动误差的影响。  相似文献   

12.
针对传统检测方法存在精度低、训练复杂度高、适应性差的问题,提出了基于快速分数阶Fourier变换估计Hurst指数的DDoS攻击检测方法。利用DDoS攻击对网络流量自相似性的影响,通过监测Hurst指数变化阈值判断是否存在DDoS攻击。在DARPA2000数据集和不同强度TFN2K攻击流量数据集上进行了DDoS攻击检测实验,实验结果表明,基于FFrFT的DDoS攻击检测方法有效,相比于常用的小波方法,该方法计算复杂度低,实现简单,Hurst指数估计精度更高,能够检测强度较弱的DDoS攻击,可有效降低漏报、误报率。  相似文献   

13.
建立基于最优阶次的分数阶神经网络的动态预测模型,给出数据预处理、最优阶次优化和预测算法流程步骤,给定模型预测精确度的性能指标。分数阶神经网络是从时频两方面分析数据,比BP神经网络具有更灵活有效的函数逼近能力;针对短时数据分析,分数阶神经网络局部性与小波神经网络一致具有多分辨力,且有更强的自适应能力、更快的收敛速度和更高的预测精度。以短时交通流量数据为例进行仿真,与基于小波神经网络和BP神经网络模型的短时交通流量预测仿真比较,分析评价性能指标,结果表明分数阶神经网络最优阶次下可实现灵活快速有效的交通流量动态预测。  相似文献   

14.
分析并讨论了分数阶傅里叶变换对OFDM系统峰均功率比性能的影响,并与传统的采用离散傅里叶变换的OFDM系统的峰均功率比性能进行了比较。结果表明在子载波数较少的情况下,采用分数阶傅里叶变换的OFDM系统的峰均功率比性能要优于采用离散傅里叶变换的OFDM系统的峰均功率比性能,而随着系统子载波数量的逐渐增加,二者性能趋向一致。  相似文献   

15.
研究了一种基于分数阶傅里叶变换(FRFT)的多项式相位信号快速估计方法,对于线性调频信号(LFM),即用信号延时相关解调的方法得到调频斜率的粗略估计,从而得到分数阶旋转角度的范围,简化为小范围的一维搜索问题。多项式相位信号的检测通过延时相关解调可转化为LFM信号的检测,再运用FRFT便可进行参数估计。理论分析与仿真结果表明该方法简单,估计性能好。  相似文献   

16.
The fractional Fourier transform: theory, implementation and error analysis   总被引:5,自引:0,他引:5  
The fractional Fourier transform is a time–frequency distribution and an extension of the classical Fourier transform. There are several known applications of the fractional Fourier transform in the areas of signal processing, especially in signal restoration and noise removal. This paper provides an introduction to the fractional Fourier transform and its applications. These applications demand the implementation of the discrete fractional Fourier transform on a digital signal processor (DSP). The details of the implementation of the discrete fractional Fourier transform on ADSP-2192 are provided. The effect of finite register length on implementation of discrete fractional Fourier transform matrix is discussed in some detail. This is followed by the details of the implementation and a theoretical model for the fixed-point errors involved in the implementation of this algorithm. It is hoped that this implementation and fixed-point error analysis will lead to a better understanding of the issues involved in finite register length implementation of the discrete fractional Fourier transform and will help the signal processing community make better use of the transform.  相似文献   

17.
一种基于分数阶Fourier域的数字水印   总被引:1,自引:0,他引:1  
提出了一种分数阶Fourier域的水印嵌入算法。将一复伪随机序列作为水印信息嵌入到图像的分数阶Fourier域中。分数阶Fourier变换的变换角度(α,β)为水印增加了两个自由度,增强了水印的安全性。仿真结果验证了该算法的有效性。  相似文献   

18.
The paper reveals the relationship between the weighting coefficients and weighted functions via the research of coefficients matrix and based on the original definition of 4-weighted fractional Fourier transform(4-WFRFT).The multi-parameters expression of weighting coefficients are given.Moreover, the 4-WFRFT of discrete sequences is defined by introducing DFT into it, which makes it suitable for digital communication systems.After analyzing the properties of WFRFT, a typical scheme for modulation/demodula...  相似文献   

19.
Research progress of the fractional Fourier transform in signal processing   总被引:28,自引:3,他引:28  
While solving a heat conduction problem in 1807, a French scientist Jean Baptiste Jo-seph Fourier, suggested the usage of the Fourier theorem. Thereafter, the Fourier trans-form (FT) has been applied widely in many scientific disciplines, and has played i…  相似文献   

20.
DMD全息系统重构灰度级分数傅立叶全息图   总被引:1,自引:0,他引:1  
论文提出一种基于DMD投影系统的全息重构系统,用VC++实现分数傅立叶变换全息图生成平台并生成灰度全息图,由DMD全息系统实现灰度级分数傅立叶变换全息图重构,验证了DMD全息系统的可行性。此系统可为动态全息显示提供硬件基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号