首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Duplex αβ,-sialon ceramics with a minimum volume fraction of residual intergranular glass have been prepared using Dy or Sm as the α-sialon stabilizing element. These microstructures contained high aspect ratio β-sialon grains homogeneously distributed in an α-sialon matrix. A number of the larger α-sialon grains contained dislocations and showed a core/shell structure. Dy gave an α-sialon which was stable over a wide temperature range (1350–1800°C) for long holding times, while the use of Sm resulted in less stable α-sialon structures at medium temperatures (1450°C) and the formation of melilite, R2Si3−xAlxO3+xN4−x, β-sialon, and the 21R sialon polytype during prolonged heating. High α-phase contents gave a very high hardness ( H V10 is approximately 22 GPa) but a comparatively low indentation fracture toughness (around 4.4 MPam1/2). Duplex sialons fabricated from powder mixtures corresponding to an α-to-β sialon ratio of around 50:50 resulted in a sialon material with a favorable combination of high hardness (around 22 GPa) and increased toughness (to around 5.5 MPam1/2).  相似文献   

2.
The corrosion behavior of sialon ceramics was investigated in supercritical water at 450°C under 45 MPa for 2–50 h. α-sialon exhibited better corrosion resistance than β-sialon and α/β-sialon. Pitting corrosion with the formation of corrosion products was observed in the case of β-sialon and α/β-sialon. By contrast, the corrosion behavior of α-sialon was characterized by uniform corrosion with the formation of corrosion products. The degree of strength deterioration was strongly dependent on the corrosion morphology. The bending strength of α-sialon after corrosion for 30 h was about 90% of its initial strength, while the strength of β-sialon decreased to 65% of its original strength.  相似文献   

3.
Dense sialon ceramics along the tie line between Si3N4 and Nd2O3·9AlN were prepared by hot-pressing at 1800°C. The materials were subsequently heat-treated in the temperature range 1300–1750°C and cooled either by turning off the furnace (yielding a cooling rate (Tcool) of ∼50°C/min) or quenching (Tcool≥ 400°C/min). It was found necessary to use the quenching technique to reveal the true phase relationships at high temperature, and it was established that single-phase α-sialon forms for 0.30 x 0. 51 in the formula NdxSi12–4S x Al4.5 x O1. 5 x , N16–1.5 x . The α-sialon is stable only at temperatures above 1650°C, and it transforms at lower temperatures by two slightly different diffusion-controlled processes. Firstly, an α-sialon phase with lower Nd content is formed together with an Al-containing Nd-melilite phase, and upon prolonged heat treatment thus-formed α-sialon decomposes to the more stable β-sialon and either the melilite phase or a new phase of the composition NdAl(Si6-zAlz)N10-zOz. Nd-doped α-sialon ceramics containing no crystalline intergranular phase show very high hardness (HV10 = 22. 5 GPa) and a fracture toughness ( K lc= 4.4 MPa·m1/2) at room temperature. The presence of the melilite phase, which easily formed when slow cooling rates were applied or by post-heat-treatment, reduced both the fracture toughness and hardness of the materials.  相似文献   

4.
β-sialon and Nd2O3-doped α-sialon materials of varying composition were prepared by sintering at 1775° and 1825°C and by glass-encapsulated hot isostatic pressing at 1700°C. Composites were also prepared by adding 2–20 wt% ZrO2 (3 mol% Nd2O3) or 2–20 wt% ZrN to the β-sialon and α-sialon matrix, respectively. Neodymium was found to be a fairly poor α-sialon stabilizer even within the α-phase solid solution area, and addition of ZrN further inhibited the formation of the α-sialon phase. A decrease in Vickers hardness and an increase in toughness with increasing content of ZrO2(Nd2O3) or ZrN were seen in both the HIPed β-sialon/ZrO2(Nd2O3) composites and the HIPed Nd2O3-stabiIized α-sialons with ZrN additions.  相似文献   

5.
Plasma etching of β-Si3N4, α-sialon/β-Si3N4 and α-sialon ceramics were performed with hydrogen glow plasma at 600°C for 10 h. The preferential etching of β-Si3N4 grains was observed. The etching rate of α-sialon grains and of the grain-boundary glassy phase was distinctly lower than that of β-Si3N4 grains. The size, shape, and distribution of β-Si3N4 grains in the α-sialon/β-Si3N4 composite ceramics were revealed by the present method.  相似文献   

6.
β-Sialon powder was synthesized by the simultaneous reduction and nitridation of Hadong kaolin at 1350°C in an N2–H2 atmosphere, using graphite as a reducing agent. The average particle size of β-sialon powder was about 4.5 μm. The synthesized β-sialon powder was pressureless sintered from 1450° to 1850°C under a N2 atmosphere. The relative density, modulus of rupture, fracture toughness, and microhardness of β-sialon ceramics sintered at 1800°C for 1 h were 92%, 248 MPa, 2.8 MN/m3/2, and 13.3 GN/m2, respectively. The critical temperature difference (ΔTc) in water-quench thermal-shock behavior was about 375°C for the synthesized β-sialon ceramics.  相似文献   

7.
The yttrium–sialon ceramics with the composition of Y0.333Si10Al2ON15 and an excess addition of Y2O3 (2 or 5 wt%) were fabricated by hot isostatic press (HIP) sintering at 1800°C for 1 h. The resulting materials were subsequently heat-treated in the temperature range 1300–1900°C to investigate its effect on the α→β-sialon phase transformation, the morphology of α-sialon grains, and mechanical properties. The results show that α-sialons stabilized by yttrium have high thermal stability. An adjustment of the α-sialon phase composition is the dominating reaction in the investigated Y–α-sialon ceramics during low-temperature annealing. Incorporation of excess Y2O3 could effectively promote the formation of elongated α-sialon grains during post-heat-treating at relatively higher temperature (1700° and 1900°C) and hence resulted in a high fracture toughness ( K IC= 6.3 MPa·m1/2) via grain debonding and pullout effects. Although the addition of 5 wt% Y2O3 could promote the growth of elongated α grains with a higher aspect ratio, the higher liquid-phase content increased the interfacial bonding strength and therefore hindered interface debonding and crack deflection. The heat treatment at 1500°C significantly changed the morphology of α-sialon grains from elongated to equiaxed and hence decreased its toughness.  相似文献   

8.
Dense α-sialon materials were produced by hot isostatic pressing (HIP) and post-hot isostatic pressing (post-HIP) using compositions with the formula Y x (Si12–4.5 x , Al4.5 x )-(O1.5 x ,N16–1.5 x ) with 0.1 ≤ x ≤ 0.9 and with the same compositions with extra additions of yttria and aluminum nitride. X-ray diffraction analyses show how the phase content changes from large amounts of β-sialon ( x = 0.1) to large amounts of α-sialon ( x = 0.4) and increasing amounts of mellilite and sialon polytypoids ( x = 0.8). Samples HIPed at 1600°C for 2 h contained unreacted α-silicon nitride, while those HIPed at 1750°C for 1 h did not. This could be due to the fact that the time is to short to achieve equilibrium or that the high pressure (200 MPa) prohibits α-sialon formation. Sintering at atmospheric pressure leads to open porosity for all compositions except those with excess yttria. Therefore, only samples with excess yttria were post-HIPed. Microstructrual analyses showed that the post-HIPed samples had the highest α-sialon content. A higher amount of α-sialon and subsequently a lower amount of intergranular phase were detected at x = 0.3 and x = 0.4 in the post-HIPed samples in comparison to the HIPed. The hardness (HV10) and fracture toughness ( K IC) did not differ significantly between HIPed and post-HIPed materials but vary with different x values due to different phase contents. Measurements of cell parameters for all compositions show a continuous increase with increasing x value which is enhanced by high pressure at high x values.  相似文献   

9.
The translucent Mg-α-sialon ceramics have been prepared by spark plasma sintering (SPS) α-Si3N4 powder with AlN and MgO as the additives at 1850°C for 5 min. The sample possesses a uniform, dense microstructure under the rapid densification of SPS process. The translucent Mg-α-sialon ceramics achieve the maximum transmittance of 66.4% for the sample of 0.5 mm in thickness in the medium infrared region, which could be attributed to the equiaxed microstructure and few glassy phase confirmed by the observation of transmission electron microscopy. The material also exhibits good mechanical properties of high hardness (21.4±0.3 GPa) and fracture toughness (6.1±0.1 MPa·m1/2).  相似文献   

10.
Hot-pressed Dy-α-sialon ceramics, using LiF as a sintering additive, were fabricated at lower temperatures (≤1650°C). Some of the densified samples possessed higher hardness and fracture toughness up to 19.00–20.00 GPa and 4.00–6.00 MPa·m1/2, respectively. The amount of LiF had a strong effect on the densification behavior in sialon preparation. As one of the experimental results, the sample with 0.1 wt% of LiF additive sintered at 1600°C produced an optical translucence of about 50% in the range of 1.5–5.0 μm wavelengths. The maximum infrared transmission reached ∼60% at a wavelength of 2.4 μm. It is inferred that these more easily sintered materials would be practical for optical applications in certain fields.  相似文献   

11.
α/β-Si3N4 composites with various α/β phase ratios were prepared by hot pressing at 1600°–1650°C with MgSiN2 as sintering additives. An excellent combination of mechanical properties (Vickers indentation hardness of 23.1 GPa, fracture strength of about 1000MPa, and toughness of 6.3 MPa·m1/2) could be obtained. Compared with conventional Si3N4-based ceramics, this new material has obvious advantages. It is as hard as typical in-situ-reinforced α-Sialon, but much stronger than the latter (700 MPa). It has comparable fracture strength and toughness, but is much harder than β-Si3N4 ceramics (16 GPa). The microstructures and mechanical properties can be tailored by choosing the additive and controlling the heating schedule.  相似文献   

12.
The Pr α-sialon powders prepared by self-propagating high-temperature synthesis (SHS), consisting of 55 wt% Pr α-sialon and 45 wt% of β-sialon (abbreviated as α' and β'), were hot-pressed at 1800°C for 1 h. The results showed that Pr α' phase would transfer to β' with the appearance of JEM phase (Pr(Si6− z Al z )(N10− z O z )) after sintering, thus resulting in the increase of β' phase to 86 wt%. The addition of Y2O3 into SHS-ed Pr α' powders as the starting materials restrains the transformation of α' to β' and prevents the formation of JEM phase as well. The nucleation mechanism of Pr α' grain during hot-pressing was investigated in terms of transmission electron microscope and energy-dispersive spectrometer analysis. Two nucleation modes of Pr α' grains were found, i.e., nucleating on the undissolved Pr α' grains and on the nuclei of (Pr, Y) α' grains precipitated from liquid phase.  相似文献   

13.
Electrical conductivity was measured from 850° to 1400°C for β-sialon and pure X phase as well as for the sintered system Si3N4-Al2O3, containing β-sialon, X phase, β-Si3N4, and glassy phase. Ionic conductivity was measured at >1000°C. The charge carriers were identified by electrolysis. The results showed that pure β-sialon is ionically conducting because of Si4+ migration for the temperature range studied. Pure X phase shows ionic conduction by Si4+ above 1000°; below 1000°C, it shows electronic conduction because of impurities. The conductivity of the sintered system Si3N4-Al2O3 containing β-sialon, β-Si3N4 X phase, and glassy phase changes as the relative quantities of β -sialon and X phase change. The apparent activation energies for the ionic and electronic conductivities are 45 and 20 kcal/mol, respectively.  相似文献   

14.
Starting from three powder mixtures of 80 vol% SiC (100α, 50α/50β, 100β) and 20 vol% YAG, liquid-phase-sintered silicon carbide ceramics were prepared by hot pressing at 1800°C for 1 h under 25 MPa, and then by hot forging or annealing at 1900°C for 4 h under an applied stress of 25 MPa in argon. The phase transformation and texture development in the as-hot-pressed, hot-forged, and annealed SiC ceramics were investigated via X-ray diffraction (XRD) and the pole figure measurements. The 6H → 4H polytypic transformation was observed in samples consisting of both α- and β-SiC phases when subjected to compressive deformation but absent in the case of annealing, suggesting the deformation-enhanced solubility of aluminum in SiC. Deformation was also found to enhance the 3C → 4H transformation in the sample containing entirely β-phase, which is due to the accelerated solution-precipitation process assisted by grain boundary sliding. The current study showed that the β- →α-phase transformation had little effect on texture development in SiC. Hot forging generally produced the strongest texture, with the calculated maximum of 2.2 times random in samples started with pure α-SiC phase. The mechanism for texture development was explained based on the microstructural observations.  相似文献   

15.
Silicon nitride ceramics were prepared by spark plasma sintering (SPS) at temperatures of 1450°–1600°C for 3–12 min, using α-Si3N4 powders as raw materials and MgSiN2 as sintering additives. Almost full density of the sample was achieved after sintering at 1450°C for 6 min, while there was about 80 wt%α-Si3N4 phase left in the sintered material. α-Si3N4 was completely transformed to β-Si3N4 after sintering at 1500°C for 12 min. The thermal conductivity of sintered materials increased with increasing sintering temperature or holding time. Thermal conductivity of 100 W·(m·K)−1 was achieved after sintering at 1600°C for 12 min. The results imply that SPS is an effective and fast method to fabricate β-Si3N4 ceramics with high thermal conductivity when appropriate additives are used.  相似文献   

16.
The single-phase α-sialon ceramics with high optical transmittance have been prepared by hot pressing. The maximum transmittance reached 65.2% and 52.2% in the infrared wavelength region, 58.5% and 40% in the visible region for the samples 1.0 and 1.5 mm thickness, respectively. The material also exhibited good mechanical properties of high hardness (20 GPa) and better fracture toughness (5.1 MPa·m1/2). Both high optical transmittance and improved toughness of α-sialon ceramics were attributed to the less-grain-boundary glassy phase and the homogeneous microstructure, which was obtained by a proper process and confirmed by SEM and TEM observation, compared to that prepared by ordinary sintering. It is, therefore, expected that the translucent α-sialon ceramics could be a promising optical window material.  相似文献   

17.
high-strength Si3N4with elongated β-Si3N4 and equiaxed α-sialon was tested in cyclic and static fatigue at 1400°C. At low stress intensity factors and high frequencies, the pullout process of the elongated grains was enhanced, which suppressed the crack growth. This provides a possible explanation for the increased lifetime under cyclic leading conditions reported for ceramics by several investigators. While crack-healing by high-temperature annealing was found to greatly reduce the subsequent static fatigue crack growth rate, it had only a modest effecf on cyclic fatigue and none at high frequencies.  相似文献   

18.
The effects of sintering cycles and doping elements on the microstructures of Ln-α-sialon were studied. The results showed that microstructures with an elongated α-sialon morphology could be obtained through high-temperature post-heat treatment (1800–1900°C) or by prolonging soaking times during sintering. Different rare-earth elements had a profound effect on the microstructure of the resulting α-sialon. The Ln-α-sialon doped with low- Z -value elements could easily develop elongated grains with higher aspect ratio.  相似文献   

19.
Dy-α-sialon and β-Si3N4 materials containing Dy-oxynitride glass were hot pressed at 1800°C for 1 h. The luminescence spectra of Dy3+ in these samples were compared when excited at 350 nm. The results showed that two strong emission bands in the region 470–500 nm and 570-600 nm, associated with the 4F9/26H15/2 and 4F9/26H13/2 transitions of Dy3+ ions, were observed in Dy-α-sialon. However, no emission peak was detected from the β-Si3N4 sample, despite it containing the same amount of Dy3+ cations. This proved that only the Dy3+ cations in the α-sialon structure, not those in the oxynitride glass, produce the luminescence spectrum.  相似文献   

20.
Depending on the calcium:phosphorus molar ratio of the initial precipitates determined by precipitation conditions (calcium:phosphorus molar ratio of reactants and pH of reaction environment), after sintering at 1250°C, monophase, biphase, or triphase ceramics consisting of hydroxyapatite, β-tricalcium phosphate, α-tricalcium phosphate, and calcium oxide were obtained. The phase composition and properties—i.e., density, shrinkage, hardness, bending strength, and roughness—of the fractured surfaces of the isostatically re-pressed sinters were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号