首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 166 毫秒
1.
An unsteady Navier-Stokes (N-S) solver based on the method of operator splitting and artificial compressibility has been studied for the moving boundary problem to simulate blood flow through a compliant vessel. Galerkin finite element analysis is used to discretize the governing equations. The model has been applied to a time-varying computational domain (two-dimensional tube) as a test case for validation. Consideration has been given to retaining the space conservation property. The same code is then applied to a hypothetical critical high-pressure gradient over a short length of blood vessel based on the spring and dashpot model. The governing equation for the blood vessel is based on two-dimensional dynamic thin-shell theory that takes into account the curvature of the stenotic portion of the vessel. Progressing the solution towards steady state is considered, as the main objective is to show the viability of the current technique for fluid/structure interactions. Preliminary results of the wall velocity and displacement based on steady state prediction agree well with data in the literature. Results, such as the streamlines, wall pressures and wall shear stress depict the possible progression of arterial disease.  相似文献   

2.
刘小燕  陈春俊  王亚南 《机械》2014,(12):1-4,58
采用计算流体力学的数值计算方法对基于三维、瞬态、可压缩Navier-Stokes方程和κ-ε两方程紊流模型进行求解,模拟高速列车单车通过隧道时列车外流场的特性,分析高速列车单车通过隧道的压力波特性及阻力变化规律。结果表明列车单车通过隧道的压力波最小负压值与速度为二次函数的关系,列车阻力主要由压差阻力构成。研究结果可为解决隧道空气动力学问题提供参考依据。  相似文献   

3.
两栖车两相绕流场的模拟与水上快速性分析   总被引:2,自引:0,他引:2  
两栖车形体复杂,其水上绕流场和水上性能难于用传统手段进行预报,计算流体力学为解决这一问题开辟了新途径。以计算流体力学中广泛使用的雷诺时均纳维—斯托克斯方程为基本控制方程,采用切应力输运型 湍流模型结合流体体积分数法,进行两栖车水上两相绕流场的数值模拟。控制方程由有限体积法离散,压力速度耦合采用SIMPLE策略处理,代数方程由高斯—赛德尔法求解。阻力是快速性的主要指标,以其为判据对比试验与模拟得到的阻力结果,相对误差在5%左右。构建阻力—速度模型,模型的系统参数由最小二乘法进行辨识后得到结论,兴波阻力与航速的1.88次方成正比,摩擦阻力与航速的1.76次方成正比,粘压阻力与航速的3.54次方成正比。得到的系统模型为定性分析两栖车水上快速性提供了依据。  相似文献   

4.
圆柱形谐振管内非线性驻波的有限体积计算方法   总被引:1,自引:0,他引:1  
提出一种用于求解圆柱形谐振管内非线性驻波的有限体积计算方法。谐振管内初始为自由状态的流体被整体谐振激励,当激励频率与谐振管内声场固有频率一致时,谐振管内将产生非线性驻波。建立整体振动条件下谐振管内瞬态可压缩热粘性牛顿流体的一维Navier-Stokes模型方程的积分方程;在时域上,通过SIMPLEC方法(以压力为基础的有限体积法)和交错网格技术推导出离散化代数方程组,并进行求解。当谐振管内的流体为R-12气体,在整体振动的条件下,利用提出的方法对谐振管内的非线性驻波进行求解,通过与现有文献中伽辽金方法的计算结果进行对比,所得到的非线性驻波声压在波形和幅值方面都与这些结果非常吻合,从而验证了该方法的可行性。得到谐振管左端处的绝对压力波形、温度波形和声压频谱响应等物理特性分布;同时得到谐振管内不同位置处的速度变化,发现在谐振管两端出现了速度钉状波形;有限体积计算方法为解决强声密封的非线性驻波的数值计算奠定了良好基础。  相似文献   

5.
Numerical simulations for the blood flow are carried out to investigate the effect of the flexible artery wall on the flow field and to determine the wall shear stresses in the carotid artery wall. To solve the equation of motion for the structure in typical fluid-structure interaction (FSI) problems, it is necessary to calculate the fluid force on the surface of the structure explicitly. To avoid complexity due to the necessity of additional mechanical constraints, we use the combined formulation including both the fluid and structure equations of motion into a single coupled variational equation. The Navier-Stokes equations for fluid flow are solved using a P2P1 Galerkin finite element method (FEM) and mesh movement is achieved using arbitrary Lagrangian-Eulerian (ALE) formulation. The Newmark method is employed to solve the dynamic equilibrium equations for linear elastic solid mechanics. The time-dependent, three-dimensional, incompressible flows of Newtonian fluids constrained in the flexible wall are analyzed. The study shows strongly skewed axial velocity and flow separation in the internal carotid artery (ICA). Flow separation results in locally low wall shear stress. Further, strong secondary motion in the ICA is observed.  相似文献   

6.
To develop vortex generator jet (VGJ) method for flow control, the turbulence flow in a 144°conical diffuser with and without vortex generator jets are simulated by solving Navier-Stokes equations with κ -ε turbulence model. The diffuser performance, based on different velocity ratio (ratio of the jet speed to the mainstream velocity), is investigated and compared with the experimental study. On the basis of the flow characteristics using computation fluid dynamics (CFD) method observed in the conical diffuser and the downstream development of the longitudinal vortices, attempt is made to correlate the pressure recovery coefficient with the behavior of vortices produced by vortex generator jets.  相似文献   

7.
The steady Couette flow of a Newtonian fluid between two plates, one of them a plane, the other one provided with riblets aligned perpendicular to the flow direction, is taken as a model for lubricant friction with wall roughness. In cases where the amplitude of the riblets is small compared to the riblet spacing, Reynolds lubrication approximation leads to an explicit solution. In contrast to this, a treatment of the full hydrodynamic equations is required for higher amplitudes. Under creeping flow conditions, an analytical treatment of the Stokes equations based on complex function theory allows for a reduction of the problem to the solving of ordinary differential and integral equations for functions of one variable. After this problem reduction, the resulting equations are solved by Fourier analysis and computer algebra.The resulting streamline patterns of the flow reveal the formation of vortices under certain conditions. Since these vortices act like a kind of fluid roller bearings, their influence on the drag force and material transport of the lubricant is studied.  相似文献   

8.
Dareing DW  Tian F  Thundat T 《Ultramicroscopy》2006,106(8-9):789-794
An analytical approach to determine the streamlines of fluid flow adjacent to the surfaces of vibrating cantilevers is presented. Fluid flow over the top and bottom surfaces of a microcantilever is established by solving two-dimensional Navier-Stokes equations for viscous flow. The x and y velocity components are used to establish streamlines for absolute fluid motion. These streamlines show a central stagnation core perpendicular and central to the cantilever surface extending along the full length of cantilevers, which most likely accounts for the added mass effect (induced mass) of fluid media around vibrating microcantilevers.  相似文献   

9.
This paper studies a steady axisymmetric flow in a constricted rigid tube. A shear-thinning fluid modelling the deformation-dependent viscosity of the blood is proposed. The motion equation is written in vorticity-streamfunction formulation and is solved numerically by a finite difference scheme. The flow pattern with the distributions of pressure and shear stress at the wall are computed. The dependence of the flow on the dimensionless parameters has been investigated and differences from the Newtonian case are discussed.  相似文献   

10.
Classically, the EHD problem is solved using the Reynolds assumptions to model the fluid behaviour, and the Boussinesq elastic deformation equation to model the solid response, both being coupled with the load balance equation. The development of an alternative approach is presented here in order to solve at once the Navier-Stokes equations (mass conservation and momentum equilibrium), the full elasticity and energy equations for the line EHD problem in a fluid-structure interaction approach.The Finite Element Method is used to solve the mathematical formulation in a fully coupled way, inspired from Habchi et al. (2008) [1]. After linearisation with the Newton procedure, all the physical quantities (pressure, velocity field, deformations and temperature) are solved together in a unique system. An important benefit of this approach is the possibility to implement in a simple manner the non-Newtonian and thermal effects; in fact all the quantities can vary through the film thickness. The extension to non-Newtonian rheology and the pressure and temperature dependencies for the viscosity and density are taken into account in a direct way to allow an acceptable prediction of the friction coefficient. Gradients across the film thickness and temperature fields in both the fluid and the two solids are naturally computed and analysed. As a case study, we focus first on the pure sliding cylinder-on-plane contact. It is shown that thermal effects due to friction in the central zone of the contact play a role in heating the lubricant at the inlet zone, via heat conduction in the solids. By increasing the Slide-to-Roll Ratio (SRR), the occurrence of dimples and the subsequent effects in different parts of the contact under zero entrainment velocity conditions are then studied.  相似文献   

11.
The periodicity of the physiological flow has been the major interest of analytic research in this field up to now. Among the mechanical forces stimulating the biochemical reaction of endothelial cells on the wall, the wall shear stresses show the strongest effect to the biochemical product. The objective of present study is to find the effects of velocity waveform on the wall shear stresses and pressure distribution along the artery and to present some correlation of the velocity waveform with the clinical observations. In order to investigate the complex flow phenomena in the bifurcated tube, constitutive equations, which are suitable to describe the rheological properties of the non-Newtonian fluids, are determined, and pulsatile momemtum equations are solved by the finite volume prediction. The results show that pressure and wall shear stresses are related to the velocity waveform of the physiological flow and the blood viscosity. And the variational tendency of the wall shear stresses along the flow direction is very similar to the applied sinusoidal and physiological velocity waveforms, but the stress values are quite different depending on the local region. Under the sinusoidal velocity waveform, a Newtonian fluid and blood show big differences in velocity, pressure, and wall shear stress as a function of time, but the differences under the physiological velocity waveform are negligibly small.  相似文献   

12.
A numerical investigation has been performed to identify the rarefaction effects on the flow structure of an isolated micron-sized spherical particle. An isothermal sphere in the slip flow regime 10?3 ?? Kn ?? 10?1 at intermediate Reynolds numbers (1 ?? Re ?? 50) is considered. The Navier-Stokes equations are solved by a control volume technique in conjunction with the velocity slip boundary condition. It was found that the wake region can shrink considerably as the Knudsen number increases. Furthermore, the skin friction and pressure drag coefficients decrease as the Knudsen number increases due to the reduction in normal velocity gradients and shrinkage of the wake region, respectively. Engineering correlations for predicting the total drag coefficient in the slip flow regime are presented.  相似文献   

13.
彭光杰  王正伟  杨文 《流体机械》2005,33(12):19-22
通过求解包括进水管、叶轮、泵体等过流部件在内的水泵流道内的三维稳定雷诺平均Navier-Stokes方程,获得水泵内部的流场分布特征。对计算结果与实测结果进行了对比。表明计算所得流量-扬程曲线与实测值吻合良好;流量.效率曲线在小流量相差较大,在大流量吻合得较好。虽然在部分运行工况模拟计算不是很准确,但计算的各工况压力、速度分布以及整个流道的其它流动特性,对分析挖泥泵的各种流动问题很有帮助。  相似文献   

14.
The aerodynamic effects of a 3-dimensional Wing in Ground Effect (WIG) which moves above the free surface has been numerically investigated via finite difference techniques. The air flow field around a WIG is analyzed by a Marker & Cell (MAC) based method, and the interactions between WIG and the free surface are studied by the pressure distributions on the free surface. Waves are generated by the surface pressure distribution, and a Navier-Stokes solver has been employed, to include the nonlinearities in the free surface conditions. The pressure values Cp and lift/drag ratio are reviewed by changing the height/chord ratio. In the present computations a NACA0012 airfoil with a span/chord ratio of 3.0 are treated. Through computational results, it is confirmed that the free surface can be treated as a rigid wavy wall.  相似文献   

15.
A novel algorithm of pressure field estimation based on ultrasound velocity profiler (UVP) is developed. The method consists of UVP measurement of velocity distribution in fluid flows and numerical analysis of the measured data using fluid dynamics equations. We introduce equation of continuity, incompressible Navier-Stokes equation and proper orthogonal decomposition (POD) into the basic algorithm, so that pressure field of space-time two-dimensional unsteady fluid flow is fully reconstructed. Since UVP is based on ultrasound Doppler principle, the local instantaneous pressure distribution is obtained non-intrusively. The performance of an algorithm is evaluated for vortex shedding flow behind a circular cylinder at Re = 1000. Considering the specification of UVP, the optimal method of experimental data conversion to pressure information is proposed. We have found that the one-dimensional velocity measurement by UVP upon Taylor's frozen hypothesis is suitable for evaluation of pressure field in wake of the cylinder. The present algorithm is also demonstrated for opaque fluid flows by considering vortex flow in milk.  相似文献   

16.
圆平动化学机械研抛过程的流体动力性能分析   总被引:1,自引:0,他引:1  
根据圆平动化学机械研抛(C ircular-translational-moving Chem icalMechan ical Polishing,CTM-CMP)的运动关系,建立了极坐标下非稳态流体膜厚方程和非稳态下牛顿流体在CTM-CMP过程中的润滑方程。利用有限差分法数值求解获得了瞬时工件与研抛盘间的压力分布和膜厚分布,分析了压力积分载荷、倾覆力矩与研抛速率及姿态角的变化关系。结果表明CTM-CMP过程易于形成负压,有利于提高研磨效率。随着研抛速率的增加,承载能力和倾覆力矩线性增加;随着倾角的增加,承载能力和倾覆力矩非线性增大。分析结果有助于指导CTM-CMP的应用。  相似文献   

17.
斜盘式轴向柱塞泵内柱塞偶件间油膜为相对运动的偶件提供润滑及密封作用。油膜流动将直接影响柱塞偶件的工作性能。深入分析偶件间油膜的流动规律对设计与优化柱塞偶件有重要意义。基于Navier-Stokes(N-S)方程,引入Navier边界滑移推导偶件间油膜流动方程,根据柱塞运动的周期性规律,分析单个周期内滑移长度和柱塞泵转速对油膜流动剪应力及流量的影响。研究发现:吸油阶段时近柱塞壁面处油膜剪应力随滑移长度增大而减小,流量随着滑移长度增大而增大,柱塞运动速度最大且滑移长度由1 μm增大到3 μm后,剪应力减小18%,流量增大13.59%;排油阶段柱塞运动速度越大,近柱塞壁面处剪应力和油膜流量与无滑移条件下的差距越小。在滑移长度为1 μm的条件下柱塞泵转速由1 500 r/min增大到4 000 r/min时,近柱塞壁面处的油膜剪应力与无滑移条件下相比降低明显,一个周期内油膜总流量与无滑移条件下相比差距减小。  相似文献   

18.
Techniques of discrete field mechanics are used to obtain rationally based closed form solutions for sandwich panels with isolated core blocks. The mathematical model for a rational analysis including membrane, flexural and composite action is derived in the form of summation equations. The solution is written as a double finite Fourier series for the nodal quantities and double infinite Fourier series for continuous quantities. The derived formulae are numerically illustrated.  相似文献   

19.
朱正写 《风机技术》2012,(5):70-74,81
针对乙烯裂解炉第一急冷器PQE头部损坏的问题,运用压力容器、热力学、流体力学原理对材质、壁厚、工艺参数等进行了综合分析,确定PQE头部为外压失稳,并提出了切实有效的解决方法。  相似文献   

20.
The present work studies fluid forces in a squeeze film damper with a circumferential feeding groove. The groove is taken as a special damper to analyse fluid forces. The dynamic performance of the squeeze film damper is attributed to the special damper, two film lands, and their interactions. From this viewpoint, dynamic effects in the groove are studied based on linearized Navier-Stokes equations to consider effects of variations of fluid velocity and pressure in the groove on forces in the damper. Investigations on film lands are conducted by using a simplified Navier-Stokes equation to include fluid inertia. Then, the two part analyses are combined together by studying the interactions of the flow and the pressure between the groove and film lands from the continuity condition and a Navier-Strokes equation, resulting in new models for force predictions. The new models are compared with experimental results and published work. Comparisons show the new models give better predictions and correlation with experimental data than traditional theory. The new models give a significant improvement on results obtained by traditional theory, especially for tangential force. Based on the new models, the effects of the groove on fluid forces are studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号