首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Communication networks have to provide a high level of availability and instantaneous recovery after failures in order to ensure sufficient survivability for mission-critical services. Currently, dedicated path protection (or 1 + 1) is implemented in backbone networks to provide the necessary resilience and instantaneous recovery against single link failures with remarkable simplicity. However, in order to satisfy strict availability requirements, connections also have to be resilient against Shared Risk Link Group (SRLG) failures. In addition, switching matrix reconfigurations have to be avoided after a failure in order to guarantee instantaneous recovery. For this purpose, there are several possible realization strategies improving the characteristics of traditional 1 + 1 path protection by lowering reserved bandwidth while conserving all its favorable properties. These methods either utilize diversity coding, network coding, or generalize the disjoint-path constraint of 1 + 1.In this paper, we consider the cost aspect of the traditional and the alternative 1 + 1 realization strategies. We evaluate the bandwidth cost of different schemes both analytically and empirically in realistic network topologies. As the more complex realizations lead to NP-complete problems even in the single link failure case, we propose both Integer Linear Programming (ILP) based optimal methods, as well as heuristic and meta-heuristic approaches to solve them. Our findings provide a tool and guidelines for service providers for selecting the path protection method with the lowest bandwidth cost for their network corresponding to a given level of reliability.  相似文献   

2.
In multi-agent systems, it is crucial to maintain a robust and fault-tolerant network topology while minimizes power consumption, especially for the multiple unmanned combat platforms based on mobile robotic networks. This work studies the problem of fault-tolerant topology control in mobile robotic networks. With the aim of constructing self-healing networks, a K-connected topology control algorithm that can cope with faults such as node failures and link disruptions is proposed. The robotic team stays connected in the dynamic interaction topology, even in the face of K-1 nodes departure. Our approach combines power transmission and motion control for constructing a K-connected network topology with approximately minimum power to prolong their working life. Extensive numerical simulations demonstrate the effectiveness of the proposed solution are presented.  相似文献   

3.
In WDM networks, it is important to protect connections against link failures due to the high bandwidth provided by a fiber link. Although many p-cycle based schemes have been proposed for single-link failure protection, protection against two-link failures have not received much attention. In this paper, we propose p-cycle based protection schemes for two-link failures. We formulate an ILP model for the p-cycle design problem for static traffic. We also propose two protection schemes for dynamic traffic, namely SPPP (Shortest Path Pair Protection) and SFPP (Short Full Path Protection). Simulation results show that SFPP is more capacity efficient than SPPP under incremental traffic. Under dynamic traffic, SPPP has lower blocking than SFPP when the traffic load is low and has higher blocking than SFPP when the traffic load is high.  相似文献   

4.
The network coding problem (NCP), which aims to minimize network coding resources such as nodes and links, is a relatively new application of genetic algorithms (GAs) and hence little work has so far been reported in this area. Most of the existing literature on NCP has concentrated primarily on the static network coding problem (SNCP). There is a common assumption in work to date that a target rate is always achievable at every sink as long as coding is allowed at all nodes. In most real-world networks, such as wireless networks, any link could be disconnected at any time. This implies that every time a change occurs in the network topology, a new target rate must be determined. The SNCP software implementation then has to be re-run to try to optimize the coding based on the new target rate. In contrast, the GA proposed in this paper is designed with the dynamic network coding problem (DNCP) as the major concern. To this end, a more general formulation of the NCP is described. The new NCP model considers not only the minimization of network coding resources but also the maximization of the rate actually achieved at sinks. This is particularly important to the DNCP, where the target rate may become unachievable due to network topology changes. Based on the new NCP model, an effective GA is designed by integrating selected new problem-specific heuristic rules into the evolutionary process in order to better diversify chromosomes. In dynamic environments, the new GA does not need to recalculate target rate and also exhibits some degree of robustness against network topology changes. Comparative experiments on both SNCP and DNCP illustrate the effectiveness of our new model and algorithm.  相似文献   

5.
We consider the design of resilient networks that are fault tolerant against link failures. Resilience against link failures can be built into the network by providing backup paths, which are used in the eventuality of an edge failure occurring on a primary path in the network. We consider several network design problems in this context; these problems are motivated by the requirements of current high-speed optical networks. In all the following problems the objective is to provide resilience in networks while minimizing the cost incurred. The main problem under consideration in this paper is that of backup allocation: this problem takes as its input an already provisioned primary network and a parameter k, and allocates backup capacity on the edges of the underlying network so that all the demand can be routed even in the presence of k edge failures. We also consider a variant of this problem where the primary network has a tree topology, and it is required that the restored network retains a tree topology. We then address the problem of simultaneous primary and backup allocation: we are given specifications of the traffic to be handled, and the goal is to provision both the primary as well as the backup network. Finally, we investigate a single-commodity problem motivated by a pragmatic scenario in which the primary network is not known in advance and demands between source--sink pairs arrive online.  相似文献   

6.
The rise in multicast implementations has seen with it an increased support for fast failure recovery from link and node failures. Most recovery mechanisms augment additional services to existing protocols causing excessive overhead, and these modifications are predominantly protocol-specific. In this paper, we develop a multicast failure recovery mechanism that constructs protocol independent fast reroute paths to recover from single link and single node failures. We observe that single link failure recovery in multicast networks is similar to recovering unicast traffic, and we use existing unicast recovery mechanisms for multicast traffic. We construct multicast protection trees that provide instantaneous failure recovery from single node failures. For a given node x, the multicast protection tree spans all its neighbors and does not include itself. Thus, when the node fails, the neighbors of the node are connected through the multicast protection tree instead of node x, and forward the traffic over the multicast protection tree for the duration of failure recovery. The multicast protection trees are constructed a priori, without the knowledge of the multicast traffic in the network. Based on simulations on three realistic network topologies, we observe that the multicast protection trees increase the routing table size only by 38% on average and the path length between any source–destination pair by 13% on average.  相似文献   

7.
This paper presents a reconfiguration scheme resulting in capacity efficiency and fast restoration by utilizing the inherent benefits of Virtual Paths in ATM networks. The unified optimization of bandwidth reconfiguration is addressed so that switched ATM networks can support both service and survivability from a common pool of network spare capacity at a given time. The spare capacity is composed of idle bandwidth and freed up bandwidth from the switch pairs which have a surplus bandwidth. Fast restoration can be achieved by using the pre-optimized network spare bandwidth and preplanned backup Virtual Paths based on the link and node disjoint path routing scheme. The overall operation of the proposed self-healing strategy can be consolidated into distributed fault management functions at ATM layer based on Virtual Paths. The scheme enables a logical Virtual Paths ring protection switching in ATM networks.  相似文献   

8.
《Computer Communications》1999,22(15-16):1400-1414
Broadband networks based on ATM technology can carry a large volume of data and can support diverse services like audio, video, and data uniformly. The reliability and availability levels provided by such networks should be very high. Self-healing is an elegant concept in this direction to provide highly reliable networks. A self-healing network can detect failures such as link/node failures and reroute the failed connections automatically using distributed control mechanisms. In this paper, we consider link and node failures including the VP terminating nodes unlike Kawamura and Tokizawa (Self-healing in ATM networks based on virtual path concept, IEEE Journal on Selected Areas in Communications 12 (1) (1994) 120–127). We present here an improved scheme for self-healing in ATM networks based on the concept of backup VPs. The problems we address are: (i) self-healing scheme; and (ii) backup VP routing. Two issues are addressed in the self-healing scheme: (i) backup VP activation protocol; and (ii) dynamic backup VP routing. We propose a new backup VP activation protocol which uses a VC packing strategy which allows the fast and prioritized restoration of critical VCs that were carried by failed VPs. We also propose a distributed dynamic backup VP routing algorithm which reduces the resource contention that may occur when multiple source–destination pairs contend for the routes simultaneously. The objective of the backup VP routing problem is to find a backup VP for each of the working VPs so that the cost of providing the backup is minimized. We propose a heuristic based solution for the backup VP routing problem using the concept of minimum cost shortest paths. We conducted simulation experiments to evaluate the performance of the proposed schemes. The results show that the proposed schemes are effective. Comparison of the results with those of the earlier schemes (R. Kawamura, I. Tokizawa, Self-healing in ATM networks based on virtual path concept, IEEE Journal on Selected Areas in Communications 12 (1) (1994) 120–127; C.J. Hou, Design of a fast restoration mechanism for virtual path-based ATM networks, Proceedings of IEEE INFOCOM’97, Kobe, Japan, April 1997) shows that the proposed schemes perform better.  相似文献   

9.
耿海军 《计算机科学》2019,46(1):143-147
目前,互联网部署的域内链路状态路由协议,如开放最短路径优先(Open Shortest Path First,OSPF)和中间系统到中间系统(Intermediate System-to-Intermediate System,IS-IS),采用被动恢复方案应对网络故障。随着网络的发展,大量的实时应用部署在互联网上,OSPF的收敛时间无法满足这些实时应用对收敛时间的需求。因此,学术界和工业界提出采用路由保护方案来应对网路中出现的故障。然而,已有的路由保护方案存在两个方面的问题:1)默认路径和备份路径的交叉度较高,如LFA;2)为了计算两条交叉度低的路径,对默认路径加以限制,即默认路径不采用最短路径,如Color Tree。为了解决上述两个问题,首先将上述问题归结为整数规划模型,接着利用启发式方法计算近似最优解,最后在实际网络和模拟网络中对所提算法进行了大量实验。实验结果表明,所提算法可以降低默认路径和备份路径的交叉度,极大地提高网络的可用性。  相似文献   

10.
赵季红  乔琳琳  曲桦  张文娟 《计算机工程》2021,47(7):140-145,154
网络切片是5G网络的基础架构技术,为在多个切片共享同一底层网络资源的同时保证切片的可靠性,提出一种区分业务类型的网络切片可靠性映射算法,解决底层网络链路故障、网络切片可靠性与资源利用率相互矛盾的问题。通过区分切片承载业务类型,对高可靠低时延切片请求的链路提前构建备份路径,并采用基于最大生成树链路的备份资源共享保护方法,对高带宽切片请求则采用基于链路可靠性的重映射算法恢复故障链路。仿真结果验证了该算法的有效性,与SVNE1+1和DPS-VNRA算法相比,其在切片成功运行率、长期收益开销比、物理链路利用率和故障恢复率方面均具有优势。  相似文献   

11.
在网络编码研究中,线性编码技术已趋于成熟,但它有着需要大字符表且不适用于非多播网络的弱点,这推动了对非线性编码的研究.本文给出编码函数的新描述,在此基础上将非线性编码分成两类:证明了前者与线性编码等价,能从线性编码中构造出,且具有相同的编码能力;证明了后者的存在性.  相似文献   

12.
Wireless broadband networks based on the IEEE 802.11 technology are being increasingly deployed as mesh networks to provide users with extended coverage for wireless Internet access. These wireless mesh networks, however, may be deployed by different authorities without any coordination a priori, and hence it is possible that they overlap partially or even entirely in service area, resulting in contention of radio resources among them. In this paper, we investigate the artifacts that result from the uncoordinated deployment of wireless mesh networks. We use a network optimization approach to model the problem as resource sharing among nodes belonging to one or different networks. Based on the proposed LP formulation, we then conduct simulations to characterize the performance of overlaying wireless mesh networks, with the goal to provide perspectives for addressing the problems. We find that in a system with multiple overlaying wireless mesh networks, if no form of inter-domain coordination is present, individual mesh networks could suffer from capacity degradation due to increased network contention. One solution toward addressing the performance degradation is to “interwork” these wireless mesh networks by allowing inter-domain traffic relay through provisioning of “bridge” nodes. However, if such bridge nodes are chosen arbitrarily, the problems of throughput sub-optimality and unfairness may arise. We profile the impact of bridge node selection and show the importance in controlling network unfairness for wireless mesh network interworking. We conclude that mesh network interworking is a promising direction to address the artifacts due to uncoordinated deployment of wireless mesh networks if it is supplemented with appropriate mechanisms.  相似文献   

13.
无线Mesh网可以使用网络编码技术显著提高多跳链路的传输性能。但网络编码是有代价的,如何选择编码节点以减少网络编码的代价是研究的重点。对无线Mcsh网中的网络编码节点的选取进行了讨论,提出了一种基于超关键节点的网络编码节点选取算法。该算法是在Ford-Fulkerson标号算法找增广链的时候,统计路径上的每个节点的入度,并在节点上保存从不同输入链路获得的信息,从而确定哪些是超关键节点,这些超关键节点将是编码节点。仿真实验表明,在实现组播最大流的前提下,该算法能有效减少网络编码的节点数。  相似文献   

14.
赵进  张福炎 《计算机科学》2006,33(12):114-116
由于在内容分发网络中.将大文件从一台服务器复制到其他服务器需要耗费大量的时间。本文首先对内容分发网络中的复制问题进行了形式化描述,然后提出了一种分布式的方案NCOM,用于减小复制时间。方案的创新性在于,NCOM在CDN中构建一个Mesh结构,利用多路径传输数据块,提高速率;同时也利用Network Coding技术来避免需要从不同路径调度不同数据块所带来的协调开销。实验结果表明,与现有方案相比,NCOM可以显著减小复制时间。  相似文献   

15.
In the area of communication systems, stability refers to the property of keeping the amount of traffic in the system always bounded over time. Different communication system models have been proposed in order to capture the unpredictable behavior of some users and applications. Among those proposed models the adversarial queueing theory (aqt) model turned out to be the most adequate to analyze an unpredictable network. Until now, most of the research done in this field did not consider the possibility of the adversary producing failures on the network structure. The adversarial models proposed in this work incorporate the possibility of dealing with node and link failures provoked by the adversary. Such failures produce temporal disruptions of the connectivity of the system and increase the collisions of packets in the intermediate hosts of the network, and thus the average traffic load. Under such a scenario, the network is required to be equipped with some mechanism for dealing with those collisions.In addition to proposing adversarial models for faulty systems we study the relation between the robustness of the stability of the system and the management of the queues affected by the failures. When the adversary produces link or node failures the queues associated to the corresponding links can be affected in many different ways depending on whether they can receive or serve packets, or rather that they cannot. In most of the cases, protocols and networks containing very simple topologies, which were known to be universally stable in the aqt model, turn out to be unstable under some of the newly proposed adversarial models. This shows that universal stability of networks is not a robust property in the presence of failures.  相似文献   

16.
Failures in fiber-optic networks may be caused by natural disasters, such as floods or earthquakes, as well as other events, such as an Electromagnetic Pulse (EMP) attack. These events occur in specific geographical locations, therefore the geography of the network determines the effect of failure events on the network’s connectivity and capacity.In this paper we consider a generalization of the min-cut and max-flow problems under a geographic failure model. Specifically, we consider the problem of finding the minimum number of failures, modeled as circular disks, to disconnect a pair of nodes and the maximum number of failure disjoint paths between pairs of nodes. This model applies to the scenario where an adversary is attacking the network multiple times with intention to reduce its connectivity. We present a polynomial time algorithm to solve the geographic min-cut problem and develop an ILP formulation, an exact algorithm, and a heuristic algorithm for the geographic max-flow problem.  相似文献   

17.
网络编码是一种新的网络传输技术,能够充分利用网络的理论组播速率上限.讨论了在网络编码下综合考虑编码开销和网络链路开销的网络总开销优化问题,将由网络编码引起的编码开销同样纳入优化问题的考虑范围.给出了2种各有优劣的网络信息流模型描述这一问题,并在不同模型下定义了2种开销的一般形式.由于这一优化问题属于NP难问题,目前一般采用启发式算法获得近似的优化解.随后的实验中,在不同规模的拓扑下对比了基于2种不同信息流模型的启发式算法的性能.由于考虑了编码开销使得联合优化问题远比链路开销优化问题复杂,模拟实验显示,只有当编码开销与链路开销价值系数之比达到1000以上时,才能获得比单纯链路优化更小的总开销.在提出基于遗传算法的方案之前,还简单地讨论了联合优化问题的复杂度.  相似文献   

18.
Real-time services require reliable and fault tolerant communication networks to support their stringent Quality of Service requirements. Multi Topology Routing based IP Fast Re-route (MT-IPFRR) technologies provide seamless forwarding of IP packets during network failures by constructing virtual topologies (VTs) to re-route the disrupted traffic. Multiple Routing Configurations (MRC) is a widely studied MT-IPFRR technique. In this paper, we propose two heuristics, namely mMRC-1 and mMRC-2, to reduce the number of VTs required by the MRC to provide full coverage for single link/node failures, and hence, to decrease its operational complexity. Both heuristics are designed to construct more robust VTs against network partitioning by taking their topological characteristics into consideration. We perform extensive experiments on 3200 topologies with diverse structural properties using our automated topology generation and analysis tool. Numerical results show that the amount of reductions in VT requirements get higher up to 31.84 %, as the networks tend to have more hub nodes whose degree is much higher than the rest of the network.  相似文献   

19.
The protection design is a key issue in survivable wavelength division multiplexing (WDM) optical networks. Most researches focused on protecting unicast traffic against the failure of a single network component such as a link or a node. In this paper, we investigate the protection scheme for multicast traffic in meshed WDM optical networks under dual-link failure consideration, and propose a novel protection algorithm called shared segment protection with reprovisioning (SSPR). Through dynamically adjusting link-cost according to the current network state, SSPR establishes a primary light-tree and corresponding link-disjoint backup segments for each multicast connection request. A backup segment can efficiently share wavelength capacity of its working tree or the common resource of other backup segments. Capacity reprovisioning establishes new segments for the vulnerable connections after a link failure and tolerates following link failures. The simulation results show that SSPR not only can make good use of wavelength resources and protect multicast sessions against any single-link failure, but also can greatly improve the traffic restorability in the event of dual-link breakdown.  相似文献   

20.
《Computer Networks》2008,52(12):2381-2394
Failure resilience is a desired feature of the Internet. Most traditional restoration architectures assume single failure assumption, which is not adequate in present day WDM optical networks.Multiple link failure models, in the form of shared risk link groups (SRLG’s) and shared risk node groups (SRNG’s) are becoming critical in survivable optical network design. We classify both of these form of failures under a common scenario of shared risk resource groups (SRRG) failures. We develop graph transformation techniques for tolerating multiple failures arising out of shared resource group (SRRG) failures.Diverse routing in such multi-failure scenario essentially necessitates finding out two paths between a source and a destination that are SRRG disjoint. The generalized diverse routing problem has been proved to be NP-Complete. The proposed transformation techniques however provides a polynomial time solution for certain restrictive failure sets. We study how restorability can be achieved for dependent or shared risk link failures and multiple node failures and prove the validity of our approach for different network scenarios. Our proposed technique is capable of improving the diverse route computation by around 20–30% as compared to approaches proposed in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号