首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
《Organic Electronics》2014,15(9):2043-2051
Transverse (z) alignment of PEDOT grains was demonstrated in inkjet printed PEDOT:PSS. This explained the superior transverse charge conduction mode in inkjet printed PEDOT:PSS films, best fitted by the Efros-Shklovskii 1D-VRH (variable range hopping) model in this study compared with spin coated PEDOT:PSS films, which have demonstrated layers of generally in-plane aligned PEDOT:PSS grains. The findings of this study, regarding the microstructure of inkjet printed PEDOT:PSS films and their transverse charge transport model, justify measurements of the transverse conductivity of inkjet printed films in this study being 600 times higher than that of spin coated films. In addition, it was found that the addition of 5 wt% DMSO in the printing PEDOT:PSS ink lowers the workfunction by 3% approximately.  相似文献   

2.
The technologically important inkjet printed poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) films, at different extents of co-doping with dimethyl sulfoxide DMSO, have been studied in terms of in-plane charge transport and electric field force microscopy (EFM). Similarly to past studies of spin coated PEDOT:PSS films, room temperature conductivity is enhanced by a factor of 103 to 130 S cm−1 on the addition of 5% DMSO, Hall probe analysis demonstrated a decrease in contact resistance from 106 Ω to 104 Ω whilst variable-temperature conductivity analysis shows an increase in the VRH exponent from 0.25 to 0.5 signifying a charge transport evolution from Mott Variable Range Hopping in 3-dimensions to a pseudo 1-dimensional Variable Range Hopping. In addition, electric field force microscopy (EFM) showed a corresponding threefold increase in PEDOT grain size. Further analysis was conducted to determine the hopping length and the ratio of the hopping length versus localization length in the electron transport model.  相似文献   

3.
The thermoelectric generator has been an attractive alternative power source to operate a wireless sensor node. Usually, inorganic compounds are most often used in thermoelectric devices, and hence, are extensively studied due to their superior thermoelectric performance. We have investigated a novel interfacial technique to fabricate a hybrid film of highly conductive PEDOT:PSS (poly 3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and graphene. Organic materials PEDOT doped with PSS exhibits outstanding electrical properties due to its high conductivity, low bandgap, and energy migration. Furthermore, we utilized graphene fabricated by rapid thermal chemical vapor deposition (RTCVD) as a thermoelectric material. Our results show that the interfacial technique between substrate and hybrid film could be clearly improved due to the UV plasma treatment. The thermoelectric hybrid film of PEDOT:PSS and RTCVD graphene (P/RTG) exhibited an enhanced power factor of 56.28 μW m−1 K−2 with a Seebeck coefficient of 54.0 μV K−1.  相似文献   

4.
《Organic Electronics》2014,15(6):1083-1087
We demonstrate improved performances in polymer light-emitting diodes (PLEDs) using a composite film of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and MoO3 powder as a hole injection layer. The PLED with the composite film exhibits the current efficiency of 13.5 cd/A, driving voltage of 3.4 V, and half lifetime of 108.1 h, while those values of the PLED with a pristine PEDOT:PSS was 11.3 cd/A, 3.8 V, and 41.5 h, respectively. We also analyze the morphological, optical and electrical properties of the composite films by atomic force microscopy (AFM), UV–Vis-IR absorption, and ultraviolet photoemission spectroscopy (UPS). This work suggests that mixing MoO3 into PEDOT:PSS is a simple and promising technique for use solution-based devices as an hole injection layer.  相似文献   

5.
Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) has been widely used as the hole transport material in optoelectronic devices. To avoid the cross talk among different crossbars, PEDOT:PSS with low conductivity is required. It thus has a high loading of the non-conductive PSSH. The PSSH-to-PEDOT weight ratio is 6 for Clevios P VP Al 4083 that is the most popular polymer as the hole transport layer. However, the acidic PSSH brings severe problems to the device stability and performance. Here, PEDOT:PSS solutions with low acidity can be prepared through a facile treatment of PEDOT:PSS solution by probe ultrasonication. Two grades of PEDOT:PSS, Clevios PH1000 and Clevios P, with a PSSH-to-PEDOT weight ratio of 2.5 were treated by probe ultrasonication. The ultrasonication can lower the viscosity and the colloidal sizes of PEDOT:PSS solutions and conductivity of PEDOT:PSS films. The pH value of probe-ultrasonicated Clevios P was 2.12, higher than that (1.77) of pristine Clevios P VP Al 4083. The ultrasonication-treated PEDOT:PSS solutions were used as hole transport layer in polymer solar cells and perovskite solar cells. The photovoltaic performances of these solar cells are comparable to that of control devices employing Clevios P VP Al 4083 PEDOT:PSS as the hole transport layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号