首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Interface electronic structures of four-kinds of electron transporting or hole blocking organic materials (n-type) on a widely-used hole transporting material (p-type) in organic light emitting diodes (OLEDs), N,N′-bis (1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamin (NPB), were investigated by means of photoelectron spectroscopy (PES). 1,3-bis[5-(4-tert-butylphenyl)-1,3,4-oxadiazole-2-yl]benzene (OXD-7) and 2,2′,2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) overlayers show continuous energy shift of each overlayer-derived spectral components and the vacuum level proportional to the thickness. This energy shift is ascribed to a spontaneous building up of the electrostatic potential within the organic layers (giant surface potential; GSP). The energy shift of the overlayers induced by GSP as well as the interface vacuum level shift are adequately taken into account to determine the actual energy barrier heights of the hole conduction levels at the heterojunctions. 4,4′-bis(9-carbazolyl)biphenyl (CBP) and p-bis(triphenylsilyl) benzene (UGH2) induce band bending in the NPB film which presumably results from charge transfer (CT) to the n-type materials from NPB. Despite absence of a practical vacuum level shift and thickness dependent shift of the overlayer-derived electronic states, the CT-derived energy shift of NPB reduces the actual energy barrier height with respect to the nominal barrier height being simply interpreted from PES spectra of a thick overlayer of each material. The energy level diagrams across these ‘n-on-p’ organic–organic heterojunctions were finely determined based on the above interpretation of the PES spectra.  相似文献   

2.
We have fabricated flexible field-effect transistors (FETs) using poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)], PCDTBT, as an active channel, poly(methyl methacrylate) (PMMA) as gate dielectric and biaxially oriented polyethyleneterephthalate (BOPET) as supporting substrate. The output and transfer characteristics of the devices were measured as a function of channel length. It has been observed that various OFET parameters viz. on–off ratio (∼105), mobility (μ ∼ 10−4 cm2 V−1 s−1), threshold voltage (Vth ∼ −14 V), switch-on voltage (Vso ∼ −6 V), subthreshold slope (S ∼ 7 V/decade) and trap density (Nit ∼ 1014 cm−2 V−1) are almost independent of the channel length, which suggested a very high uniformity of the PCDTBT active layer. These devices were highly stable under atmospheric conditions (temperature: 20–35 °C and relative humidity: 70–85%), as no change in mobility was observed on a continuous exposure for 70 days. The studies on the effect of strain on mobility revealed that devices are stable up to a compressive or tensile strain of 1.2%. These results indicate that PCDTBT is a very promising active layer for the air stable and flexible FETs.  相似文献   

3.
To overcome the drawbacks of the acidic and hygroscopic nature of the poly(3,4‐ethylenedio‐xythiophene):poly(styrenesulfonate) hole transport layer (HTL), the p‐type polymeric hole transport materials have attracted great attention and have been applied into perovskite solar cells. Here, a starburst amine molecule 4,4′,4″‐tris(3‐methylphenylphenylamino)triphenylamine (m‐MTDATA) without any additive is demonstrated as an effective hole transport material in perovskite solar cells. Meanwhile, considering the different surface affinity of precursor's composition on m‐MTDATA, the influence of the molar ratios between lead iodine (PbI2) and methylammonium iodide in precursor solution on the perovskite characteristics and device performance is investigated in‐depth. Ultimately, an enhanced efficiency of 17.73% and a high fill factor of 79.6% are achieved, which attribute to the strong passivation effect of traps and small resistance loss from appropriate unreacted PbI2 left in the perovskite layer. This work not only provides a remarkable HTL, but also reveals that the adjustment of precursor ratio is necessary for the one‐step solution approach, because the affinities of precursor's composition may be different with the underlying transport layers.  相似文献   

4.
We explore the magnetoconductance (MC) response of N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl)benzidine-based single-layer devices. The MC effect can be observed only if the device is irradiated with light, for measurement voltages |V| < 5 V. A positive MC with a non-Lorentzian line shape is obtained under forward bias. Under reverse bias, however, the MC shows both positive and negative components, forming a “W” shape with dips at about ±100 mT. The sign of the MC under reverse bias can be changed by controlling the carrier extraction from the anode/organic interface. We suggest that the positive MC is caused by triplet–polaron interaction and the negative MC by bipolaron formation.  相似文献   

5.
Electronic structures with the copper iodide (CuI) interlayer in organic electronic devices were measured and its strong electron-withdrawing properties were revealed. In situ ultraviolet and X-ray photoelectron spectroscopy showed the interfacial electronic structures of N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine (NPB)/CuI/indium–tin-oxide (ITO) and tris-(8-hydroxyquinolinato)aluminum (Alq3)/CuI/ITO as a representative hole- and electron-transport material. The large work function of the CuI interlayer induces electron transfer from both molecules and ITO to CuI. As a result, CuI dramatically reduces the hole injection barrier (HIB) from ITO to NPB and Alq3 layers. Notably, CuI assists molecular ordering of the NPB layer, which would increase the intermolecular interaction, so would enhance the charge transport properties. Simultaneous enhancement in HIB and molecular ordering with the CuI interlayer would improve the device performance.  相似文献   

6.
以聚苯乙烯磺酸钠(PSSNa)为掺杂剂,三氯化铁(FeCl3)为氧化剂,通过化学氧化法制备了PEDOT/PSS复合物。利用傅里叶红外光谱表征了所制复合物的组成,通过循环伏安、交流阻抗及恒电流充放电测试研究了反应物摩尔比r(EDOT:PSS)对产物比容量的影响。实验结果表明适量添加PSS可以改善复合物的电容性能。在0.5 mol/L的Na2SO4水溶液中,纯PEDOT材料的比容量可达60 F/g,但其在快速充放电条件下有明显衰减,而摩尔比r(EDOT:PSS)=1:0.5时制备的复合材料比容量则能保持较好的稳定性。当摩尔比r(EDOT:PSS)增大至1:2时所得复合物电容性能下降。  相似文献   

7.
张忠朋 《光电子.激光》2010,(12):1809-1812
采用高温固相法合成了Si4+掺杂的BaZr(BO3)2:Eu红色发光荧光粉。激发光谱表明,不同Si4+掺杂浓度明显使电荷迁移态(CTS)向高能量的位置移动,且改善了样品的发光强度。分析认为,这是由于Si4+的电负性大于所取代的Zr4+,且Si4+的进入影响了Eu3+的配位数,提高了CTS向发光中心的能量传递几率。依据Judd-Ofelt理论计算的强度参数表明,随着Si4+掺杂浓度的增加,Eu3+所处格位的对称性明显降低,增大了Eu3+的跃迁几率,从而改善了发光强度。计算Eu3+间的能量传递几率发现,在掺杂浓度为5%时,Eu3+间的能量传递几率很小,其对荧光粉的发光影响不大。  相似文献   

8.
采用传统电子陶瓷工艺合成了Ca-B-Si(CBS)玻璃掺杂的Ba(Mgl/3Nb2/3)O3微波介质陶瓷,研究了CBS掺杂量对陶瓷微波介电性能的影响。结果表明:CBS掺杂可促进陶瓷烧结并提高B位1:2有序度,进而降低微波介质损耗。当w(CBS)=3%时,陶瓷烧结温度由纯相时的1 500℃以上降至1 250℃,表观密度提高到6.32 g/cm3以上,陶瓷的微波介电性能达到最佳值:εr=26,Q.f=67 800 GHz(8 GHz),τf=25×10–6/℃。该陶瓷有望成为用于高频段微波器件的材料。  相似文献   

9.
采用固相反应法制备了BiFeO3掺杂的CaCu3Ti4O12(CCTO)陶瓷,研究了BiFeO3掺杂量对CCTO陶瓷的烧结性能、晶体结构和介电性能的影响。结果表明,BiFeO3掺杂改善了CCTO陶瓷的烧结性能。随BiFeO3掺杂量的增加,CCTO陶瓷的晶格常数和εr均先增大而后减小;而tanδ先几乎不变而后增大。当x(BiFeO3)为0.5%,1040℃烧结的CCTO陶瓷样品在1kHz时具有巨介电常数(εr=14559)和较低的介质损耗(tanδ=0.12)。  相似文献   

10.
The electronic structure of the interfaces formed after deposition of MoO3 hole‐injection layers on top of a polymer light‐emitting material, poly(dioctylfluorene‐alt‐benzothiadiazole) (F8BT), is studied by ultraviolet photoelectron spectroscopy (UPS), X‐ray photoelectron spectroscopy and metastable atom electron spectroscopy. Significant band bending is induced in the F8BT film by MoO3 “acceptors” that spontaneously diffuse into the F8BT “host” probably driven by kinetic energy of the deposited hot MoO3. Further deposition leads to the saturation of the band bending accompanied by the formation of MoO3 overlayers. Simultaneously, a new electronic state in the vicinity of the Fermi level appears on the UPS spectra. Since this peak does not appear in the bulk MoO3 film, it can be assigned as an interface state between the MoO3 overlayer and underlying F8BT film. Both band bending and the interface state should result from charge transfer from F8BT to MoO3, and they appear to be the origin of the hole‐injection enhancement by the insertion of MoO3 layers between the F8BT light‐emitting diodes and top anodes.  相似文献   

11.
采用传统固相反应法制备了Na-Ti掺杂Bi2(Zn1/3Nb2/3)2O7陶瓷。研究了Na+替代Bi3+,Ti4+替代Nb5+对Bi2(Zn1/3Nb2/3)2O7陶瓷烧结特性、显微结构和介电性能的影响。结果表明,掺入Na+和Ti4+后,Bi2(Zn1/3Nb2/3)2O7陶瓷的烧结温度从1000℃降到了860℃左右;在–30℃~+130℃的温度范围内,Na-Ti掺杂Bi2(Zn1/3Nb2/3)2O7陶瓷表现出明显的、激活能约为0.3eV的介电弛豫现象。这主要是由缺陷偶极子和晶格畸变在陶瓷中的出现引起的。  相似文献   

12.
以Ba4Sm9.33Ti18O54微波介质陶瓷为基础,掺杂Lu2O3进行改性,形成固溶式为Ba4(Sm1–yLuy)9.33Ti18O54的结构。结果表明,掺杂Lu2O3能很好地把Ba4Sm9.33Ti18O54微波介质陶瓷的烧结温度降至1 260℃,当y=0.05时Ba4Sm9.33Ti18O54为类钨青铜结构,能得到介电性能较佳的微波介质陶瓷:4.33GHz时εr约为76,Q.f约为2532,τf为–42×10–6/℃;y<0.5时生成了类钨青铜结构晶相,y≥0.5主晶相变成烧绿石相,不具备介电性。  相似文献   

13.
Ni/Au Schottky contacts with thicknesses of either 50(?)/50(?) or 600(?)/2000(?) were deposited on strained Al_(0.3)Ga_(0.7)N/GaN heterostructures.Using the measured C-V curves and I-V characteristics at room temperature,the calculated density of the two-dimensional electron-gas(2DEG) of the 600(?)/2000(?) thick Ni/Au Schottky contact is about 9.13×10~(12) cm~(-2) and that of the 50(?)/50(?) thick Ni/Au Schottky contact is only about 4.77×10~(12) cm~(-2).The saturated current increases from 60.88 to 86.3...  相似文献   

14.
采用固相反应法制备了Bi4Ti3O12(BIT)掺杂的BaTiO3-Nb2O5-ZnO(BTNZ)陶瓷,研究了BIT掺杂对所制陶瓷晶体结构、烧结性能及介电性能的影响.结果表明:BIT掺杂改善了BTNZ陶瓷的烧结特性.随着BIT量的增加,四方率c/a增大,电容变化率减小.当质量分数w(BIT)为1.0%,1 230℃烧结...  相似文献   

15.
采用sol-gel法在FTO/玻璃底电极上制备了BiFeO3/Bi4Ti3O12多层薄膜。研究了室温下薄膜的结构,铁电和漏电流性质。结果表明,相对于纯的BiFeO3薄膜,BiFeO3/Bi4Ti3O12多层薄膜具有更低的漏电流,表现出较强的铁电性,在4.40×105V/cm的测试电场强度下,剩余极化强度为3.7×10–5C/cm2。在2.00×105V/cm的测试电场强度下,BiFeO3和BiFeO3/Bi4Ti3O12薄膜的漏电流密度分别为10–5和10–7A/cm2。  相似文献   

16.
The N2-doped 3C-SiC thin films have been grown by low-pressure, chemical vapor deposition (LPCVD) on amorphous Si3N4/p-Si (111) substrates using the single, organosilane-precursor trimethylsilane [(CH3)3SiH]. The effects of N2 flow rate and growth temperature on the electrical properties of SiC films were investigated by Hall-effect measurements. The electron-carrier concentration is between 1017–1018/cm3. The lowest resistivities at 400 K and 300 K are 1.12×10−2 and 1.18×10−1 cm, respectively. The corresponding sheet resistances are 75.02 Ω/□ and 790.36 Ω/□. The SiC film structure was studied by x-ray diffraction. The 3C-SiC films oriented in the 〈111〉 direction with a 2ϑ peak at 35.5° and line widths between 0.18–0.25° were obtained. The SiC/Si3N4 interface is very smooth and free of voids. The fabrication of microelectromechanical (MEMS) structures incorporating the SiC films is discussed.  相似文献   

17.
This study investigates the tensile-strained growth of LaAlO3 on SrTiO3(0 0 1) substrate by molecular beam epitaxy (MBE). Growth was controlled in situ by reflection high energy electron diffraction (RHEED). The characterization was carried out ex situ by photoemission and atomic force microscopy (AFM). Photoelectron spectroscopy (XPS) reveals the development of a TiOx-rich interface. Photoelectron diffraction (XPD) confirms that a 1.2-nm-thick pseudomorphic LaAlO3 film has been grown on SrTiO3(0 0 1) substrate with a perpendicular lattice parameter of 0.372±0.02 nm.  相似文献   

18.
《Microelectronics Reliability》2014,54(12):2766-2774
In this study, the gold/poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester/n-type silicon (Au/P3HT:PCBM/n-Si) metal–polymer–semiconductor (MPS) Schottky barrier diodes (SBDs) were investigated in terms of the effects of PCBM concentration on the electrical parameters. The forward and reverse bias current–voltage (IV) characteristics of the Au/P3HT:PCBM/n-Si MPS SBDs fabricated by using the different P3HT:PCBM mass ratios were studied in the dark, at room temperature. The main electrical parameters, such as ideality factor (n), barrier height (ΦB0), series resistance (Rs), shunt resistance (Rsh), and density of interface states (Nss) were determined from IV characteristics for the different P3HT:PCBM mass ratios (2:1, 6:1 and 10:1) used diodes. The values of n, Rs, ΦB0, and Nss were reduced, while the carrier mobility and current were increased, by increasing the PCBM concentration in the P3HT:PCBM organic blend layer. The ideal values of electrical parameters were obtained for 2:1 P3HT:PCBM mass ratio used diode. This shows that the electrical properties of MPS diodes strongly depend on the PCBM concentration of the P3HT:PCBM organic layer. Moreover, increasing the PCBM concentration in P3HT:PCBM organic blend layer improves the quality of the Au/P3HT:PCBM/n-Si (MPS) SBDs which enables the fabrication of high-quality electronic and optoelectronic devices.  相似文献   

19.
20.
采用固相反应法制备了Bi2(Zn1/3Nb2/3)2O7(BZN)微波陶瓷,并借助XRD、SEM及LCR4284测试仪,研究了Sn4+取代Nb5+对BZN陶瓷显微结构和介电性能的影响。结果表明:随着Sn4+替代量的增加,微观形貌中出现棒晶;选取20~80℃,100 kHz时的εr计算,介电常数温度系数由205×10–6/℃逐渐减小到–240×10–6/℃;当替代量x(Sn4+)为0.16时,样品出现介电弛豫现象;随着测试频率的增加,介电弛豫峰向高温移动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号