首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Sensitivity enhancement in evanescent optical waveguide sensors   总被引:2,自引:0,他引:2  
It is shown, that the sensitivity of the effective refractive index on the cladding index in evanescent optical waveguide sensors, can be larger than unity. This implies that the attenuation of a guided wave propagating in a waveguide immersed in an absorptive medium can be made larger than that of a free-space wave propagating through the same medium. The conditions and physical explanation for this puzzling behavior are identified and as a practical application, an absorption sensor, based on a suspended silicon slab waveguide, is proposed where the sensitivity is enhanced by a factor of 1.35  相似文献   

2.
We discuss the design and fabrication of an InP-based single-chip chemical sensor with increased modal overlap with a chemical analyte. The fabricated devices use a sensor design with frequency tunable lasers and heterodyne spectrometers. By reducing the waveguide ridge width in one section of the laser, the transverse modal overlap with the analyte increases by 17 times, increasing the sensitivity by the same ratio. A frequency shift of 72 GHz/refractive index unit was measured with temperature effects removed. The frequency stability of this sensor is as low as 436 kHz leading to a minimum detectable index difference of 6 times 10-6.  相似文献   

3.
该文设计了一种基于光栅波导共振角耦合的生物传感器,通过光栅波导模式谱变化检测传感器表面有效折射率变化的方式,实现了传感器表面附着物的精确检测。并在平板介质光波导理论基础上,推导了三、四层结构理论模型,实验得到了入射角与检测溶液折射率及入射角与分子膜层厚度间的变化关系。结果表明,光栅波导共振角耦合生物传感器入射角与待测溶液折射率存在良好的线性关系,并具有较高灵敏度,精度可达0.01(°)/nm。通过该方法制作出无标记的生物传感器,能广泛应用于生物分子检测,尤其适合蛋白质分子生物检测。  相似文献   

4.
In this paper, we report numerically calculated results of testing a temperature‐insensitive refractive sensor based on a planar‐type long‐period waveguide grating (LPWG). The LPWG consists of properly chosen polymer materials with an optimized thermo‐optic coefficient for the core layer in a four‐layer waveguide structure. The resonant wavelength shift below the spectral resolution of the conventional optical spectrum analyzer is obtained accurately over a temperature change of ±7.5°C even without any temperature control. The refractive index sensitivity of the proposed grating scheme is about 0.004 per resonant wavelength shift of 0.1 nm for an optimized thermo‐optic coefficient.  相似文献   

5.
A novel type of integrated optical surface plasmon resonance (SPR) sensor is proposed, for which the operational principle is based on the launching efficiency of eigenmodes in the sensor head. The sensor comprises an inverted-rib-type dielectric waveguide, a portion of which is covered with a thin gold layer. Eigenmodes in the sensor head are coupled modes of a surface plasmon polariton and a dielectric guided wave. The excitation efficiency of the coupled modes varies significantly depending on the refractive index of the analyte medium on the sensor head. Following this principle, the transmission coefficient of light through the sensor head can be used as a sensitive measure of the variation in the refractive index of the analyte medium.  相似文献   

6.
A four-layer metal-clad structure was considered as an optical sensor for refractometry applications. The structure had a negative index material (NIM) as a core layer. The structure parameters were chosen for so that the reflectance profile of the proposed structure shows a sharp peak, which is appropriate for sensing applications. The sensor was found to exhibit a considerable angular shift of the reflectance peak for small changes in the refractive index of the analyte, due to the NIM layer.  相似文献   

7.
柏玲  赵秀丽  刘一  曲士良  李岩 《激光技术》2013,37(1):101-104
为了实现高精度、低成本的液体折射率测量,采用飞秒激光水辅助微加工技术,制备出一种基于微孔结构的单模光纤液体折射率传感器.研究了传感器的传输损耗与孔内液体折射率及微孔长度的关系,利用射线理论分析了传感的机理,讨论了温度对传感器性能的影响.结果表明,该传感器在折射率1.333~1.413区间具有良好的线性响应,灵敏度达到157.48dB/RIU,且不易受温度串扰.该传感器具有结构紧凑、制备简单、高灵敏度、温度不敏感和低成本等优点,在生物化学测量领域中有着广泛的应用前景.  相似文献   

8.
In this paper, magnetic fluid (MF), a new type of optical functional nanomaterial with interesting optical characteristics under the external magnetic field, is adopted to form a novel fiber-optic magnetic field sensor. The proposed sensor is based on Mach-Zehnder interferometer (MZI) and has a multimode-singlemode-multimode (MSM) fiber structure. The MSM structure was fabricated by splicing a section of uncoated single mode fiber (SMF) between two short sections of multimode fibers (MMFs) using a fiber fusion splicer. The magnetic field sensing probe was made by inserting the fiber-optic structure in an MF-filled capillary tube. Variations in an external magnetic field is seen to cause changes in the refractive index of MF. This tunable change in the refractive index with magnetic field strengths between 0.6 mT to 21.4 mT produces a shift in the peak position of the wavelength. The shift of the valley wavelength with magnetic field intensity has a good linearity of up to 99.6%. The achieved sensitivity of the proposed magnetic field sensor is 0.123 nm/mT,which is improved by several folds compared with those of most of the other reported MF-based magnetic field sensors. Furthermore, we build the corresponding circuit-based measurement system, and the experimental results show that the voltage change indirectly reflects the change of the external magnetic field strength. Therefore, this provides the potential to fiber-based magnetic field sensing applications.  相似文献   

9.
提出了一种附加高折射率覆盖层的长周期波导光栅折射率传感器结构.通过模拟外折射率变化所引起的高阶模式等效折射率的改变以及该高阶模式与基模相耦合的谐振波长的漂移,研究了长周期波导光栅对外界环境折射率的传感特性.模拟表明,高折射率外覆盖层的加入会使得原有的覆盖层高阶模式发生重组,高阶模式等效折射率和模式耦合的谐振波长随之发生跳变.此时,长周期波导光栅外折射率传感器的敏感度和工作范围将极大地提高.  相似文献   

10.
We have applied the effective index method to reduce the two-dimensional (2-D) refractive index profile into the 1-D refractive index structure and modified the wave equations to obtain the paraxial wave equations. Then, transverse electric (TE) and transverse magnetic (TM) polarized fields in the curved single-mode planar waveguides are analyzed by using the scalar beam-propagation method (BPM) employing the finite-difference method with a slab structure. The bending loss in bent waveguides is analyzed for optical fields obtained from the BPM and comparisons are made between the loss for the waveguides with various radius of curvature and refractive index difference. The outward shift of the optical field, which is generated at the connection between a straight and a bent waveguide, is obtained from the results of calculation of location of the maximum optical intensity. The transition loss can be reduced by introducing an optimized inward offset at a straight-to-bend junction. The birefringence for TE and TM polarized fields in bent waveguides is calculated from the phase difference of the optical fields. The wavelength shift due to the birefringence of TE and TM polarized fields in bent waveguides is also calculated.  相似文献   

11.
Remote detection of reactive analytes using optical films constructed from electrochemically prepared porous Si‐based photonic crystals is demonstrated. Porous Si samples are prepared to contain either surface oxide or surface Si‐H species, and analyte detection is based on irreversible reactions with HF(aq) or Cl2(g) analytes, respectively. HF dissolves silicon oxide from the porous matrix, causing an irreversible blue‐shift in the resonance peak of the photonic crystal. Cl2 reacts with the native Si‐H species present on the surface of as‐etched porous Si to generate reactive silicon halides that evaporate from the surface and/or react with air to convert to silicon oxide. Either Cl2‐related process reduces the net refractive index of the material that is detected as a blue shift in the spectrum. With sufficient analyte concentrations or exposure times, the spectral blue shifts are visible to the unaided eye. A portion of the porous nanostructure is filled with inert polystyrene, which acts as an internal spectral reference. The polymer fiducial protects that portion of the sensor from attack by the corrosive analytes. Reflectance spectra from both the polymer‐filled and the unfilled, reactive porous layers are acquired simultaneously. The fiducial marker also allows elimination of artifacts associated with shifts of the resonance peak upon changing the angle of incidence of the optical probe. Theoretical angle‐resolved spectra (transfer matrix method) show a good match with the experimental data. High‐temperature air or room‐temperature ozone oxidation reactions are used to prepare the HF‐reactive surface, and it is found that the ozone oxidation reaction produces a greater sensitivity to HF (LLOD of 0.1% HF in water).  相似文献   

12.
A concentration sensor based on silver (Ag)/silica (SiO2)/zirconium anhydride (ZrO2) multilayer structure is proposed. Two dominant dips can be observed in the reflection spectrum, which correspond to different sensing methods. Firstly, it is demonstrated that the coupling between the surface plasmon polariton (SPP) mode and a planar waveguide mode (WGM) leads to the Fano resonance (FR). The induced bonding hybridized modes have ultra-narrow full wave at half maximum (FWHM) as well as ultra-high quality factors (Q). We can achieve a theoretical value of the refractive index sensitivity 167 times higher than conventional surface plasmon resonance (SPR) sensors with a single metal layer. Secondly, the waveguide coupling mode was examined by measuring angular spectra. A deep and sharp waveguide coupling dip was obtained. The experimental results show that with an increase in the concentration of the fill dielectric material in the surface of the system, the resonance dip exhibits a remarkable red shift, and the measured angular sensitivity is 98.04°/RIU.  相似文献   

13.
We propose a novel method of achieving beam steering in active GaAs-AlGaAs materials. Carrier-induced refractive index change effect is applied to form a channel waveguide in a slab structure. Current injection is used as a means to control, guide, and steer an optical beam between two active stripes. In a structure that was 710 μm long, we have experimentally demonstrated waveguiding of an externally coupled optical beam and electrically induced steering of the beam over a 17-μm lateral distance at the output facet. The results of theoretical analysis and modeling of the beam shift fit the experimental data well  相似文献   

14.
A localized surface plasmon resonance (LSPR) biosensor was prepared with gold nanospheres (AuNSs) coated on the tip face of the optical silica fiber. AuNSs with the sizes of 20 nm and 80 nm were used. The sensitivities of AuNS20 nm and AuNS80 nm modified sensors to bulk refractive index (RI) variation are 82.86 nm/RIU and 218.98 nm/RIU, respectively. The AuNS80 nm modified sensor was used for the detection of 40 bases DNA hybridization and the limit of detection is 50 nmol/L, where the 40-bases DNA probe was covalently linked with AuNS80 nm. The complementary DNA sequence in tris-acetate-EDTA (TAE) buffer solution was detected as the target DNA. This fiber sensor has the advantages of small sample consumption, easy fabrication and high sensitivity.  相似文献   

15.
采用光纤布拉格光栅制备折射率传感器,研究光纤光栅的折射率传感灵敏度与其包层直径之间的关系。理论分析可得,光栅包层直径越小,Bragg波长的偏移量随环境折射率变化的影响越大,这样就能使实验中光栅所反射的LD光功率变化(传感灵敏度)越明显。利用氢氟酸溶液腐蚀光栅包层的方法,得到不同包层直径的光纤Bragg光栅折射率传感器。实验指出,包层直径减小时,光栅可传感的折射率范围会缩小,而其折射率的传感灵敏度却会增大,如包层直径为8.9 μm时,折射率的检测范围为1.3872~1.4730,其最大灵敏度值达到了224.0320 dBm/RIU。  相似文献   

16.
铌酸锂双面金属包覆波导电压传感特性   总被引:1,自引:1,他引:0  
设计了一种利用铌酸锂作为波导基片的双面金属包覆平板光波导,利用波导中超高阶导模高敏感特性制成了一种反射型光学电压传感器。入射激光束采用小角度入射,当光波导处于导模共振状态时,选择一个恰当的工作点,再通过两金属电极对该器件施加直流电压,通过检测反射光强,获得相应的电压值变化。实验测量中所用的电压范围是-800~800V, 得到的线性度值为0.995,波导反射光的反射率变化灵敏度为0.2V-1,实验表明这种电压传感器具有较好的线性和灵敏度,该新型电压传感器具有结构与制作简单、调节方便和成本低廉等优点。  相似文献   

17.
光波导生物化学传感器研究进展   总被引:2,自引:0,他引:2  
光波导具有结构简单,体积小,耐腐蚀,电绝缘性好,便于集成等特点.光波导对折射率、吸收以及放光过程(例如:化学发光或荧光)的变化敏感.这些变化对波导中传输的光起到了调制作用,可利用光波导的这些特性制成各类传感器.其中光波导生物化学传感器是将光波导技术与化学、生物工程技术相结合,它必将会在生物化学领域中发挥重要作用.本文综述了已经研制出的几种类型的光波导生物传感器,并对其特性进行了比较.  相似文献   

18.
本文提出一种贴膜D型光纤用于折射率传感,采用半解析方法建立模型,并分析计算在不同纤芯贴膜距离、贴膜厚度、贴膜折射率、工作波长条件下贴膜D型光纤工作性能,发现其折射率传感性能较普通D型光纤有较大提高,同时设计了两种工作在不同传感要求范围条件下的贴膜D型光纤。  相似文献   

19.
This study proposes a novel optical sensor structure based on a refractometer combining a bend waveguide with an air trench. The optical sensor is a splitter structure with a reference channel and a sensing channel. The reference channel has a straight waveguide. The sensing channel consists of a U‐bend waveguide connecting four C‐bends, and a trench structure to partially expose the core layer. The U‐bend waveguide consists of one C‐bend with the maximum optical loss and three C‐bends with minimum losses. A trench provides a quantitative measurement environment and is aligned with the sidewall of the C‐bend having the maximum loss. The intensity of the output power depends on the change in the refractive index of the measured material. The insertion loss of the proposed optical sensor changes from 3.7 dB to 59.1 dB when the refractive index changes from 1.3852 to 1.4452.  相似文献   

20.
设计了一种可嵌入基于表面等离子体共振(SPR)光纤传感器的微流控芯片,可用于溶液浓度的测量。采用具有良好化学惰性的有机聚合材料聚二甲基硅氧烷(PDMS)作为芯片主体的制作材料,在芯片中微流控通道内采用镀有60 nm金膜的多模光纤-光子晶体光纤-多模光纤(MMF-PCF-MMF)传感结构来激发SPR效应。当注入微流体通道的溶液浓度发生变化时,由于光纤传感部分外部折射率的变化引起SPR谐振谷移动,故该芯片可用于测量溶液浓度。本芯片微流控通道直径为0.2 mm,最高检测灵敏度可达8240.6 nm/RIU,具有便于实时测量、高灵敏度、高可靠性、溶液用量少等特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号