首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
实验以二苯甲烷和酰氯为原料,在催化剂作用下,合成双酰基二苯甲烷,经克莱门森还原成双烷基二苯甲烷,以氯磺酸磺化得到双烷基二苯甲烷双磺酸,再以NaOH溶液中和,制成双直链烷基二苯甲烷双磺酸钠Gemini表面活性剂。在酰基化反应中,n(二苯甲烷):n(酰氯):n(无水氯化铝):n(硝基甲烷)=1:2.5:3.2:6.5,首先在常温下反应24 h,然后在70℃反应6 h,收率93.4%;在克莱门森还原反应中,n(酰基二苯甲烷):n(锌粉):n(浓盐酸)=1:10:50,反应温度105℃,反应时间8 h,收率91%;在磺化反应中,n(烷基二苯甲烷):n(氯磺酸):n(氯仿)=1:2:14,反应时间6 h,收率90%。对中间体进行了红外光谱、核磁共振氢谱分析,对最终产物进行了红外光谱、质谱分析.同时还测定了其水溶液的油水界面张力、表面张力及临界胶束浓度、泡沫性和乳化力。结果表明,产物具有7.22×10~(-3)mN/m的超低界面张力。  相似文献   

2.
《精细石油化工》2017,(2):39-43
以苯、辛酰氯、硼氢化钠和环氧乙烷为原料,通过傅-克酰基化反应、还原反应和加成反应合成了1-苯基-1-辛醇聚氧乙烯醚(BO-10),通过红外吸收光谱和核磁共振波谱表征了产物的结构。对其反应条件采用正交试验进行了优化,得到正辛基酰苯的合成的适宜条件为:反应时间90 min、反应温度30℃、n(AlCl_3)∶n(C_7H_(15)COCl)=1.6∶1、n(苯)∶n(C_7H_(15)COCl)=9∶1;1-苯基-1-辛醇的合成的较佳反应条件为:n(NaBH_4)∶n(C_(14)H_(22)O)=0.8∶1、V(C_2H_5OH)∶m(C_(14)H_(22)O)=8∶1、反应温度70℃、反应时间为80mins。在此优化条件下,1-苯基-1-辛醇的总收率能达到86.01%,目的产物的加成数约为10,与壬基酚聚氧乙烯醚(NPEO10)的性能相近。  相似文献   

3.
郑行行  王蕊娜  李效军 《石油化工》2012,41(9):1056-1059
以苯和丙酸为起始原料,经酰氯化、Freidel-Crafts酰基化和沃尔夫-克斯尼尔-黄鸣龙还原反应合成了正丙苯。采用1H NMR方法分析了产物结构。表征结果显示,中间产物及最终产物为目标化合物。考察了反应物的摩尔比、反应温度和反应时间对各反应的影响。实验结果表明,合成中间产物丙酰氯、苯丙酮和最终产物正丙苯的各反应的优化条件分别为:n(氯化亚砜)∶n(丙酸)=1∶1.1,120℃反应6 h;n(丙酰氯)∶n(AlCl3)∶n(苯)=1∶1.1∶8.5,50℃反应2 h,80℃反应4 h;n(苯丙酮)∶n(水合肼)∶n(KOH)=1∶4∶2,120℃反应2 h,160℃反应4 h。在优化的反应条件下,丙酰氯、苯丙酮和正丙苯的收率分别可达73.5%,90.1%,95.6%。  相似文献   

4.
以自制1-丁基-3-甲基咪唑溴盐-三氯化铝([Bmim]Br-AlCl3)离子液体为催化剂及反应溶剂,催化邻二甲氧基苯与草酰氯的Friedel-Crafts酰基化反应,合成二-(3,4-二甲氧基苯基)乙二酮。研究了几种不同Lew-is酸离子液体、离子液体用量、原料配比、反应温度和反应时间对酰化反应收率的影响。确定了较优的工艺条件:n([Bmim]Br-AlCl3)∶n(邻二甲氧基苯)=1∶1,n(邻二甲氧基苯)∶n(草酰氯)=1∶3,反应温度为15℃,反应时间为8h,在此条件下收率为55.76%。中间体[Bmim]Br及产物二-(3,4-二甲氧基苯基)乙二酮的结构经IR、1 H NMR确证。  相似文献   

5.
以月桂酸为原料,经酰胺化、羧甲基化等合成了月桂酰胺醚羧酸盐(LAEC),考察了投料比、反应温度、反应时间等对羧甲基化反应的影响。最佳工艺条件为:n(月桂酸单乙醇酰胺):n(氯乙酸钠):n(NaOH)= 1.0:1.6:3.0,反应温度65℃,反应时间4 h,在此条件下,酰胺转化率达90%以上,产物的γcmc=2.529 mN/m,cmc=1.26 mmol/L,罗氏泡沫高度为183 mm,具有优良的表面活性。  相似文献   

6.
由氯化亚砜和十四酸制得十四酰氯,以十四酰氯和甘氨酸为原料合成了N-十四酰基甘氨酸钠(SMG),用单因素优选法研究了影响反应的因素,优化反应条件为n(十四酰氯):n(甘氨酸)=1.0:2.0,反应温度20℃,反应时间2.5 h,pH=8.5~9.5,收率84.46%,提纯后纯度99.44%,并对SMG的应用性能进行了测定。  相似文献   

7.
以月桂酸甲酯和苯乙酮为原料,通过克莱森缩合反应,合成了一种具有β-二酮结构的月桂酰苯甲酰甲烷,用红外光谱、核磁共振波谱对产物结构进行了表征。考察了反应条件对产物收率的影响,最佳的合成工艺条件为:二甲苯为溶剂,新鲜甲醇钠为催化剂,n(月桂酸甲酯):n(苯乙酮)=1.2:1,回流温度下反应3 h,收率可达85%。研究了其作为聚氯乙烯辅助热稳定剂的热稳定性能,结果表明,所制备的月桂酰苯甲酰甲烷是一种优良的聚氯乙烯用无毒辅助热稳定剂。  相似文献   

8.
以对甲砜基苯甲酸为原料,经过酰基化、缩合、脱羧三步反应得到了目标产物2-(4-(甲基磺酰基)苯甲酰基)乙酸甲酯,总收率大于80%,纯度大于93%。较佳工艺条件为:1)n(对甲砜基苯甲酸)∶n(氯化亚砜)=1∶1.4,以1,2-二氯乙烷为溶剂,回流反应1.5 h;2)n(对甲砜基苯甲酰氯)∶n(丙二酸二甲酯)∶n(乙醇镁)=1∶1.5∶1.8,室温活化1 h,然后冰浴下反应2 h;3)2-(4-(甲基磺酰基)苯甲酰基)丙二酸二甲酯在质量分数为0.24%的对苯甲磺酸水溶液体系下,回流反应4.5 h得到2-(4-(甲基磺酰基)苯甲酰基)乙酸甲酯。  相似文献   

9.
通过分子设计确定了一种新型醚酯类内给电子体的合成路线,即以芴、多聚甲醛和乙醇钠等为主要原料,经过醚化、酯化和Friedel-Crafts酰基化等反应合成了9,9双羟甲基芴(BHMF)、9,9双甲氧甲基芴(BMF)、丁二酸单乙酯和丁二酸单乙酯酰氯(ESC)4种中间体,并最终合成出目的产物2-丁二酸单乙酯酰基9,9-双甲氧甲基芴。确定的最佳反应条件为:n(BMF):n(ESC)=1:1.1,n(BMF):n(无水三氯化铝)=1: 2.2,反应时间为9 h。利用红外光谱、核磁共振氢谱和碳谱对中间体和目的产物的结构进行了表征和分析,特征峰与所设计的分子结构相符合。  相似文献   

10.
以脂肪酸甲酯、乙二胺、氯乙酸钠为原料合成了N-酰基乙二胺二乙酸钠。用单因素优化法研究了影响反应的因素,N-十二酰基乙二胺的优化反应条件为:n(月桂酸甲酯)∶n(甲醇钠)∶n(乙二胺)=1∶0.08∶8,反应温度90℃,反应时间7h;N-十二酰基乙二胺二乙酸钠的优化反应条件为:n(N-十二酰基乙二胺)∶n(氯乙酸钠)=1∶2.5,反应温度75℃,反应时间8h,pH=8~9,收率86.45%。研究表明,N-十二酰基乙二胺二乙酸钠具有良好的表面活性和螯合能力。  相似文献   

11.
以四氯化锡为催化剂 ,以苯为带水剂 ,用氯乙酸与四甘醇为原料合成了氯乙酸四甘醇双酯。研究表明 ,较佳反应条件为 :n(氯乙酸 )∶n(四甘醇 ) =2 .4∶1,带水剂w(苯 ) =10 % ,催化剂w(四氯化锡 ) =6 %~ 9% ,反应时间 3h ,生成双酯的醇转化率为 97.8% ,通过减压蒸馏提纯了氯乙酸四甘醇双酯 ,收率为 4 8.6 % ,用IR验证了产物的结构 ,但提纯方法有待改进。  相似文献   

12.
α-羟基环己基苯基甲酮的合成   总被引:3,自引:0,他引:3  
a-羟基环己基苯基甲酮是一种新型高效光敏引发剂。第一步由环己基甲酸与氯化亚砜合成环己基甲酰氯,当n(环己基甲酸)/n(氯化亚砜)=1:1.4,回流时间为3.5h时,环己基甲酰氯产率为91.7%;第二步以无水三氯化铝为催化剂,用苯与环己基甲酰氯反应合成了环己基苯基甲酮,当催化剂用量为24g,回流时间为3.5h时,产率为88.67%;第三步在氢氧化钠水溶液中,以四氯化碳为氯化试剂,新洁而灭为相转移催化剂,将环己基苯基甲酮经氯代和水解制得a-羟基环己基苯基甲酮。当反应温度60℃,反应时间5h,新洁尔灭用量50mL,四氯化碳用量12mL时,产率为67%。  相似文献   

13.
咪唑类离子液体分离回收焦化粗苯中的噻吩   总被引:1,自引:1,他引:0  
采用金属氯化物(MCly)与1-丁基-3-甲基咪唑氯化盐([BMIM]Cl)按不同摩尔比合成了一系列咪唑类离子液体,研究了离子液体用于分离回收焦化粗苯模拟液中噻吩的性能。实验结果表明,当MCly(AlCl3和FeCl3)与[BMIM]Cl的摩尔比为2时,合成的离子液体[BMIM]Cl-2AlCl3和[BMIM]Cl-2FeCl3的分离率最大,且这两种离子液体的分离效果明显优于其他离子液体;离子液体萃取分离的优化条件为:萃取时间40~60 min、萃取温度50~60℃、离子液体与苯馏分的体积比1∶20([BMIM].Cl-2AlCl3与苯馏分的体积比1∶30);[BMIM]Cl-2AlCl3和[BMIM]Cl-2FeCl3离子液体作为萃取剂可分别重复使用6次和5次,且它们具有深度萃取分离效果。[BMIM]Cl-2AlCl3和[BMIM]Cl-2FeCl3离子液体的萃取分离性能通过再生基本可以得到恢复,且通过减压蒸馏(0.05 MPa)再生可分别回收57.33%和53.21%的噻吩。  相似文献   

14.
通过两步法合成了高纯度氯化二甲基二烯丙基铵(DM),提出适宜DM提纯的流程为减压蒸馏、水蒸气蒸馏、活性炭吸附。水蒸气蒸馏时溶液pH在11左右时,DM单体中杂质(特别是强阻聚性化合物烯丙醇)的含量明显减少。利用过硫酸钾-亚硫酸氢钠(KPS-RH)引发体系引发DM与丙烯酰胺(AM)的共聚反应,在n(AM)∶n(DM)=4∶1、温度30℃、时间6h时,其适宜的共聚条件为:w(AM+DM)=40%;w(KPS)=0.010%。使用高活性偶氮二异丁脒二盐酸盐-亚硫酸氢钠(A IBA.2HC l-RH)引发体系引发共聚反应,共聚物的特性粘数可达11.6dL/g;采用聚酰胺-胺类大分子单体(PAA)-过硫酸铵(NPS)引发体系,共聚物的特性粘数高达15.3dL/g。  相似文献   

15.
近红外光谱法在线分析重烷基苯   总被引:1,自引:0,他引:1  
采用近红外光谱技术建立一种能够同时测量重烷基苯的馏程、烷基苯含量和相对分子质量等性质的分析方法。实验结果表明,5%馏程、95%馏程、烷基苯含量及相对分子质量的近红外校正模型的交互验证标准差分别为1.5℃,1.8℃,0.82%,1.7;外部验证标准差分别为2.4℃,3.3℃,1.10%,3.0;馏程、烷基苯含量及相对分子质量的分析精密度分别为±0 4℃、±0.4%和±1。近红外光谱法测定的结果明显优于常规分析方法,表明利用近红外光谱法分析重烷基苯的馏程、烷基苯含量和相对分子质量是可行的。该方法具有快速、多通道的优点,为实现重烷基苯生产过程的质量在线监测提供了手段。  相似文献   

16.
以己二酰二氯和不同取代基的苯肼合成了N,N'-二芳基己二酰二肼类中间体,然后在N-溴丁二酰亚胺(NBS)/吡啶氧化体系下室温合成了8种己二酰基双偶氮化合物。第一步反应条件为:n(己二酰二氯):n(取代苯肼)=1:2,反应温度0-5℃,反应时间4 h,收率80%-93%;第二步反应条件为:n(N,N’-二芳基己二酰二肼):n(NBs/吡啶)=1:2,氧化反应时间0.5-1.0 h,收率80%-94%。并用元素分析、IR、1H NMR对合成的中间产物及目标化合物进行了表征。  相似文献   

17.
叶青  钱春键  裘兆蓉 《石油化工》2007,36(11):1134-1138
采用隔壁精馏塔分离苯-甲苯-对二甲苯物系,用Aspen Plus软件模拟了隔壁精馏塔内温度分布及液相组成分布,考察了汽相和液相分配比对产品纯度的影响。对隔壁精馏塔模拟得到的优化操作条件为:隔壁精馏塔的理论板数为30块,侧线采出在第14块理论板,进料段为15块理论板,在进料段的第7块理论板进料,进料组成n(苯)∶n(甲苯)∶n(对二甲苯)为1∶3∶1,回流比为8.8,液相分配比为2.96,汽相分配比为0.83。在此条件下,各组分的摩尔分数大于98.5%,与实验结果基本吻合。当进料组成n(苯)∶n(甲苯)∶n(对二甲苯)为1∶3∶1时,采用隔壁精馏塔可比常规两塔流程节能27.18%。  相似文献   

18.
以3-氯-1,2-丙二醇和氨水为原料合成了3-氨基-1,2-丙二醇,并引入活性炭脱色和氨回收工艺,及分子蒸馏技术。考察了原料摩尔比、反应温度和反应时间等因素对产物收率的影响,当n(氨):n(3-氯-1,2-丙二醇)=15:1,反应温度为50℃,反应时间为4 h,采用分子蒸馏分离产物时,3-氨基-1,2-丙二醇的收率为90%,产物纯度为99.6%。采用元素分析、IR、~1H NMR和~(13)C NMR对产物进行了表征。  相似文献   

19.
在固定床反应器中以HZSM-5分子筛为催化剂,进行了苯与氯乙烷烷基化反应的实验。考察了HZSM-5分子筛的n(SiO2)∶n(Al2O3)、反应温度、n(苯)∶n(氯乙烷)和液态空速(LHSV)等因素对烷基化反应的影响。实验结果表明,随n(SiO2)∶n(Al2O3)的增大,HZSM-5分子筛的酸量减少,酸强度减弱;n(SiO2)∶n(Al2O3)=25的HZSM-5分子筛的催化活性较高;采用HZSM-5分子筛(n(SiO2)∶n(Al2O3)=25)催化苯与氯乙烷的烷基化反应的适宜操作条件为:573~613K,n(苯)∶n(氯乙烷)=8.0~10.0,LHSV=4~6h-1。在593K时,苯的转化率达到9.56%(x),乙苯选择性达到97.44%(x)。低温时烷基化反应中未发现二甲苯异构体生成,高温时有极少量的二甲苯异构体生成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号