首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aluminum oxide films have been deposited on silicon substrates by thermal decomposition of aluminum-isopropoxide. MOS capacitance and conductance measurements have been made on Al2O3-Si structures,and the influence of deposition parameters and silicon surface preparation on interface properties has been examined. The density of interface states varies from 1010 to 1011 cm?2(ev)?1, and the flatband voltage (for ~1000Å oxide) can vary between zero and several volts positive depending upon the deposition parameters and silicon surface preparation. Postdeposition annealing in moist or dry-O2 at 800°C decreases the flatband voltage. Infrared measurements indicate that this effect is accompanied by the growth of a thin interface SiO2 film. Only a very thin interface SiO2 film (~50Å) is required to produce zero flatband voltage. Biastemperature stress increases the flatband voltage value under negative gate bias. Excessive localized conduction and breakdown can be correlated with the occurrence of silicon surface defects. The radiation resistance of Al2O3-Si structures is strongly dependent upon the presence of a thin interface SiO2 film.  相似文献   

2.
3.
4.
Some of the chemical and physical properties of silicon nitride films have been studied to determine the effects of deposition process variables and wafer preparation prior to deposition. The boat temperature and the reaction gas mixture were changed to optimize the quality of the silicon nitride films. This resulted in amorphous films free of pinholes, cracks, and impurities, together with good electrical properties such as an effective barrier against sodium ions and a low fast and fixed surface state density. Most of the work has been done on silicon nitride deposited over silicon dioxide films or silicon dioxide steps on a siliconsubstrate. The silane-ammonia and the silicon tetrachloride-ammonia reactions resulted in silicon nitride of comparable physical and chemical properties. Cleaning procedures are most effective if they include an etching step to take off 50 to 100Å of the oxide prior to nitride deposition. The influence of subsequent heat treatments (up to 1200°C) on cracking and etch rates of the silicon nitride films has been studied. Films thicker than 2000Å deposited over oxide steps were found to crack after heat treatments above 1000°C. Films in the lower thickness range of 500 to 1000Å are most suitable because they have good resistance against cracking after heat treatments up to 1200°C, do not need excessively long etch times, and are still an excellent barrier against a heavy sodium contamination applied at 535°C.  相似文献   

5.
6.
孟满丁  安同邦  魏金山  马成勇  左月 《钢铁》2022,57(2):149-156
 采用传统的高强钢焊接材料焊接690 MPa级低碳铜沉淀强化钢时,仍需严格控制热输入、预热温度、层间温度,这使得低碳铜沉淀强化钢的优良性能和可节约生产成本的优势得不到很好地发挥。通过采用光学显微镜(OM)、扫描电子显微镜(SEM)、透射电镜(TEM)等表征方法,研究了不同质量分数的Si/Mn/Ni配比对690 MPa级超低碳贝氏体(ULCB)熔敷金属的组织及强韧性能的影响,为690 MPa级低碳铜沉淀强化钢配套的焊接材料的工程化应用提供一定的技术支持和积累。结果表明,690 MPa级超低碳贝氏体(ULCB)熔敷金属组织主要由板条贝氏体、粒状贝氏体和针状铁素体组成。当Si质量分数为0.16%、Mn质量分数为1.46%时,熔敷金属组织细化,冲击韧性得以提升,但Si含量过低易使贝氏体铁素体呈块状,导致韧性提升有限。而当Si质量分数为0.29%、Mn质量分数为1.02%时,Ni含量增加,贝氏体铁素体板条呈细长条状,显微组织相互交错分布,使熔敷金属冲击韧性显著改善。相变位错强化受贝氏体开始转变温度(Bs)影响,这是影响ULCB熔敷金属强度的主要原因。ULCB熔敷金属中夹杂物主要分布在贝氏体铁素体的板条亚结构间,少量成为针状铁素体的形核质点,促进针状铁素体形核,因此,对熔敷金属中的夹杂物进行控制,可进一步发挥超低碳贝氏体熔敷金属的潜力,提高其韧性。  相似文献   

7.
8.
在连铸生产实践中,皮下气泡是铸坯的一种主要缺陷,带有气泡的铸坯在轧制过程中容易产生裂纹,造成较多的轧制废品。因此防止连铸坯气泡的形成,对稳定连铸生产、提高产品质量具有重要意义。通过产品质量的提高,有利于提高莱钢产品的市场形象,扩大企业的影响力,提高优特钢产品的市场占有率。本文对优钢连铸坯中气泡的成因进行了分析,总结出连铸过程产生气泡(包括针孔)的主要原因有3类——脱氧不良、外来气体、水蒸气,并针对上述因素提出了预防措施。  相似文献   

9.
10.
11.
12.
卓晓  安同邦  马成勇 《钢铁》2020,55(4):88-94
 为了研发与420 MPa级耐候桥梁钢综合性能相匹配的焊材,研究了3种不同质量分数硅、锰的熔敷金属的组织和性能变化规律。通过扫描电子显微镜(SEM)、透射电镜(TEM)、电化学测量等手段全面分析了硅、锰质量分数对熔敷金属强韧化规律和耐蚀性的影响。结果表明,当熔敷金属中硅质量分数为0.32%时,锰质量分数从1.34%减至1.05%,抗拉强度降低5%,冲击韧性提升40%;锰质量分数为1.05%时,硅质量分数从0.34%减至0.20%,抗拉强度降低2%,冲击韧性提升24%。冲击韧性的提升归因于柱状晶区和再热粗晶区内的先共析铁素体(含侧板条铁素体)占比减少,针状铁素体增加,M-A组元尺寸减小,从而裂纹扩展路径更加曲折,裂纹扩展功增加。同时,各熔敷金属与试验用耐候桥梁钢自腐蚀电位差均小于20 mV。由此,实现了强韧性、耐蚀性与试验用钢相匹配。  相似文献   

13.
二氧化硅薄膜至今依然属人们广泛研究的材料,这是因为当这种材料制备为高质量的超薄、极薄的氧化物时,可实际应用于不同方面,如超大规模集成电路(VLSI)的栅氧化层以及液晶显示屏(LCD)的生产。本文考察了厚度为3 nm和5 nm的极薄二氧化硅层的结构性质,这些薄层是通过适度掺杂n-型硅(100)晶片而形成。在形成氧化层之前用标准RCA方法清洁,并随后在氮气氛围中退火,部分样品在HCN溶液中钝化。本研究中用傅立叶变换红外光谱(FT-IR)技术获取了复合结构中不同类型的化学键信息。对SiO2钝化试样和非钝化试样中的Si-O-Si的不对称伸缩振动分别用纵光(LO)和横光(TO)模式进行了鉴别,发现TO模式位置(约1 107 cm-1)和振幅与试样的厚度无关。另一方面,LO模式的位置从约1 230 cm-1(厚度约为1.5 nm)改变为1 244 cm-1 左右(厚度约为4.5 nm)。根据红外光谱峰的偏移,认为超薄和极薄SiOx复合结构并不均匀。对红外光谱获得的结果进行了反褶积处理并获取相关信息。用次级离子质谱分析法(SIMS,Secondary Ion Mass Spectrometry)考察了试样的原子组成,发现NH键的数量也与技术条件相关。基于记录的试样X-反射率数据的理论处理结果,用原始方法确定了材料的结构性质、层密度、表面粗糙度以及相应界面,并将所得结果与原子力显微镜所获得的结果进行了对比和讨论。借助于深能阶瞬态光谱学中的电荷变形,证实HCN溶液对二氧化硅/硅界面密度的强钝化影响。钝化后,发现新形成的界面深处缺陷阱其密度可以忽略不计,这是因为其形成原因与钝化过程中在界面处引入的NH原子对存在相关。  相似文献   

14.
ICP-AES法测定氧化铁红中的二氧化硅   总被引:1,自引:1,他引:0       下载免费PDF全文
介绍用ICP -AES法测定氧化铁红中的二氧化硅含量。试样在塑料烧杯中用盐酸和硝酸溶解 ,ICP -AES法测定。测定的空白值低 ,结果准确 ,相对标准偏差 4 91%~ 9 44 % ,加标回收率 91%~ 112 %。  相似文献   

15.
以无水四硼酸锂-偏硼酸锂混合熔剂(m/m=67∶33)作熔剂,采用熔片法制样,建立了测定铁矾土中SiO2,Al2O3,Fe2O3的X射线荧光光谱(XRF)法。讨论了脱模剂的选择及用量,对灼烧减量的影响进行考察并选择相应校正程序进行校正。采用国家标准样品和人工合成标准样品来绘制校准曲线,线性范围较宽。方法用于铁矾土标准样品和实际样品的分析,结果同认定值及化学分析方法结果相吻合,能满足铁矾土中SiO2,Al2O3,Fe2O3分析的需要。  相似文献   

16.
17.
乔蓉  郭钢 《冶金分析》2014,34(1):75-78
将白云石、石灰石标准样品直接压片, 通过灼烧减量对氧化钙、氧化镁和二氧化硅含量进行校正, 根据其含量与强度的对应关系绘制校准曲线, 建立了X射线荧光光谱法(XRF)测定白云石、石灰石中这3种主要成分的方法。对一部分试样直接压片测定, 同时另一部分试样进行灼烧减量试验, 可大大节约标准样品的用量。灼烧时间试验表明, 试样在1 100 ℃下灼烧0.5 h就可达到恒重;粒度试验表明, 样品粒度大于200目时可消除粒度效应的影响。用CaO和MgO含量进行基体校正, 可消除其对低含量SiO2的影响;采用经验系数法可消除元素间的吸收-增强效应。精密度试验结果表明, 氧化钙、氧化镁和二氧化硅测定结果的相对标准偏差(n=8)在0.038%~3.5%之间;对石灰石和白云石标准样品和实际样品进行准确度考察, 测定值与认定值或滴定法的测定值一致。  相似文献   

18.
Conclusions A study was made of the processes of diffusion impregnation of refractory metals in powder mixtures with 1–30 wt.% copper additions. It was found that the addition of up to 5 wt.% copper to the mixture accelerated the process of boronizing of refractory metals. The presence of more than 10 wt.% copper in the siliconizing mixture adversely affected the quality of the suicide coating. The addition of copper to the impregnating mixtures enabled good-quality diffusion coatings of considerable thickness to be obtained.Translated from Poroshkovaya Metallurgiya, No. 5(209), pp. 65–68, May, 1980.  相似文献   

19.
The oxygen solubility in Fe-Si melts in equilibrium with SiO2 at 1873 K has been determined in a concentration range of 0.1–70 wt % Si. Model alloys are melted in quartz crucibles in an argon atmosphere. The oxygen content in analytical samples is determined by the inert-gas reducing-fusion method after careful sample preparation. The results obtained have been processed using a thermodynamic model that can calculate the oxygen activity and solubility in Fe-Si melts up to 100 wt % Si. The effects of the heating rate and the silicon content on the carbon concentration in carbonyl iron and Fe-Si alloys are studied using the inert-gas reducing-fusion method in the temperature range 1673–2373 K. Oriented electrical steels are investigated using fractional gas analysis. The main forms of oxygen in these steels are found to be silicates, Al2O3, and MgAl2O4.  相似文献   

20.
Conclusions Using the methods of microscopical examination, chemical and mass spectrometric analyses, electron probe microanalysis, and weight loss determination, astudy was made of the reaction between technical silicon nitride powder and magnesium oxide. It is shown that the reaction involves not only the formation of forsterite, enstatite, and variable-composition glasses but also diffusion of the main components, with a gradual fall in magnesium concentration over the whole length of the diffusion zone in a model system. In the temperature range 1600–1700°C magnesium atoms drive out of the silicon nitride lattice silicon atoms, which then react with oxygen from the magnesium oxide or air to form silicon monoxide ions in the gaseous phase. The evaporation of the silicon monoxide in the system results in loss of weight, which grows with rise in temperature. The processes of evaporation and dissociation of the starting components, which sharply increase in intensity at 1800°C, make a certain contribution to the loss of weight.Translated from Poroshkovaya Metallurgiya, No. 9(177), pp. 89–96, September, 1977.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号