首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 628 毫秒
1.
The factorization algorithm of Pollard generates a sequence in ? n by $$x_0 : = 2;x_{i + 1} : = x_i^2 - 1(\bmod n),i = 1,2,3,...$$ wheren denotes the integer to be factored. The algorithm finds an factorp ofn within \(0\left( {\sqrt p } \right)\) macrosteps (=multiplications/divisions in ? n ) on average. An empirical analysis of the Pollard algorithm using modified sequences $$x_{i + 1} = b \cdot x_i^\alpha + c(\bmod n),i = 1,2,...$$ withx 0,b,c,α∈? and α≥2 shows, that a factorp ofn under the assumption gcd (α,p-1)≠1 now is found within $$0\left( {\sqrt {\frac{p}{{ged(\alpha ,p - 1}}} } \right)$$ macrosteps on average.  相似文献   

2.
P. Wynn 《Calcolo》1971,8(3):255-272
The transformation (*) $$\sum\limits_{\nu = 0}^\infty {t_\nu z^\nu \to } \sum\limits_{\nu = 0}^\infty {\left\{ {\sum\limits_{\tau = 0}^{h - 1} {z^\tau } \Delta ^\nu t_{h\nu + \tau } + \frac{{z^h }}{{1 - z}}\Delta ^\nu t_{h(\nu + 1)} } \right\}} \left( {\frac{{z^{h + 1} }}{{1 - z}}} \right)^\nu$$ whereh≥0 is an integer and Δ operates upon the coefficients {t v } of the series being transformed, is derived. Whenh=0, the above transformation is the generalised Euler transformation, of which (*) is itself a generalisation. Based upon the assumption that \(t_\nu = \int\limits_0^1 {\varrho ^\nu d\sigma (\varrho ) } (\nu = 0, 1,...)\) , where σ(?) is bounded and non-decreasing for 0≤?≤1 and subject to further restrictions, a convergence theory of (*) is given. Furthermore, the question as to when (*) functions as a convergence acceleration transformation is investigated. Also the optimal valne ofh to be taken is derived. A simple algorithm for constructing the partial sums of (*) is devised. Numerical illustrations relating to the case in whicht v =(v+1) ?1 (v=0,1,...) are given.  相似文献   

3.
In this paper, a Crank–Nicolson-type compact ADI scheme is proposed for solving two-dimensional fractional subdiffusion equation. The unique solvability, unconditional stability and convergence of the scheme are proved rigorously. Two error estimates are presented. One is $\mathcal{O }(\tau ^{\min \{2-\frac{\gamma }{2},\,2\gamma \}}+h_1^4+h^4_2)$ in standard $H^1$ norm, where $\tau $ is the temporal grid size and $h_1,h_2$ are spatial grid sizes; the other is $\mathcal{O }(\tau ^{2\gamma }+h_1^4+h^4_2)$ in $H^1_{\gamma }$ norm, a generalized norm which is associated with the Riemann–Liouville fractional integral operator. Numerical results are presented to support the theoretical analysis.  相似文献   

4.
In this paper we construct an interpolatory quadrature formula of the type $$\mathop {\rlap{--} \smallint }\limits_{ - 1}^1 \frac{{f'(x)}}{{y - x}}dx \approx \sum\limits_{i = 1}^n {w_{ni} (y)f(x_{ni} )} ,$$ wheref(x)=(1?x)α(1+x)β f o(x), α, β>0, and {x ni} are then zeros of then-th degree Chebyshev polynomial of the first kind,T n (x). We also give a convergence result and examine the behavior of the quantity \( \sum\limits_{i = 1}^n {|w_{ni} (y)|} \) asn→∞.  相似文献   

5.
LetA be any real symmetric positive definiten×n matrix, and κ(A) its spectral condition number. It is shown that the optimal convergence rate $$\rho _{SOR}^* = \mathop {\min }\limits_{0< \omega< 2} \rho (M_{SOR,\omega } )$$ of the successive overrelaxation (SOR) method satisfies $$\rho _{SOR}^* \leqslant 1 - \frac{1}{{\alpha _n \kappa (A)}}, \alpha _n \approx \log n.$$ This worst case estimate is asymptotically sharp asn→∞. The corresponding examples are given by certain Toeplitz matrices.  相似文献   

6.
One of the main objectives of interval computations is, given the functionf(x 1, ...,x n ), andn intervals $\bar x_1 ,...,\bar x_n$ , to compute the range $\bar y = f(\bar x_1 ,...,\bar x_n )$ . Traditional methods of interval arithmetic compute anenclosure $Y \supseteq \bar y$ for the desired interval $\bar y$ , an enclosure that is often an overestimation. It is desirable to know how close this enclosure is to the desired range interval. For that purpose, we develop a new interval formalism that produces not only the enclosure, but also theinner estimate for the desired range $\bar y$ , i.e., an interval y such that $y \subseteq \bar y$ . The formulas for this new method turn out to be similar to the formulas of Kaucher arithmetic. Thus, we get a new justification for Kaucher arithmetic.  相似文献   

7.
Dr. K. Taubert 《Computing》1981,27(2):123-136
Every consistent and strongly stable multistep method of stepnumberk yields a solution, of the setvalued initial value problem \(\dot y \in F(t,y),y(t_0 ) = y_0 \) . The setF(t, z) is assumed to be nonvoid, convex and closed. Upper semicontinuity of F with respect to both variables is not required everywhere. If the initial value problem is uniquely solvable, the solutions of the multistep method will converge to the solution of the continuous problem. These results carry over to functional differential equations \(\dot y \in F(t,M_t y)\) of Volterra type and to discontinuous problems \(\dot y(t) = f(t,M_t y)\) in the sense of A.F. Filippov. A difference method is applied to the discontinuous delay equation \(\ddot x(t) + 2D\dot x(t) + \omega ^2 x(t) = = - \operatorname{sgn} (x(t - \tau ) + \dot x(t - \tau ))\) . In the limit τ→0 we obtain results for the problem \(\ddot x + 2D\dot x + \omega ^2 x = = - \operatorname{sgn} (x + \dot x)\) which cannot be solved classically everywhere.  相似文献   

8.
In this paper we answer the question of when circulant quantum spin networks with nearest-neighbor couplings can give perfect state transfer. The network is described by a circulant graph G, which is characterized by its circulant adjacency matrix A. Formally, we say that there exists a perfect state transfer (PST) between vertices ${a,b\in V(G)}$ if |F(τ) ab | = 1, for some positive real number τ, where F(t) = exp(i At). Saxena et al. (Int J Quantum Inf 5:417–430, 2007) proved that |F(τ) aa | = 1 for some ${a\in V(G)}$ and ${\tau\in \mathbb {R}^+}$ if and only if all eigenvalues of G are integer (that is, the graph is integral). The integral circulant graph ICG n (D) has the vertex set Z n = {0, 1, 2, . . . , n ? 1} and vertices a and b are adjacent if ${\gcd(a-b,n)\in D}$ , where ${D \subseteq \{d : d \mid n, \ 1 \leq d < n\}}$ . These graphs are highly symmetric and have important applications in chemical graph theory. We show that ICG n (D) has PST if and only if ${n\in 4\mathbb {N}}$ and ${D=\widetilde{D_3} \cup D_2\cup 2D_2\cup 4D_2\cup \{n/2^a\}}$ , where ${\widetilde{D_3}=\{d\in D\ |\ n/d\in 8\mathbb {N}\}, D_2= \{d\in D\ |\ n/d\in 8\mathbb {N}+4\}{\setminus}\{n/4\}}$ and ${a\in\{1,2\}}$ . We have thus answered the question of complete characterization of perfect state transfer in integral circulant graphs raised in Angeles-Canul et al. (Quantum Inf Comput 10(3&4):0325–0342, 2010). Furthermore, we also calculate perfect quantum communication distance (distance between vertices where PST occurs) and describe the spectra of integral circulant graphs having PST. We conclude by giving a closed form expression calculating the number of integral circulant graphs of a given order having PST.  相似文献   

9.
Frequent subgraph mining has been extensively studied on certain graph data. However, uncertainty is intrinsic in graph data in practice, but there is very few work on mining uncertain graph data. This paper focuses on mining frequent subgraphs over uncertain graph data under the probabilistic semantics. Specifically, a measure called ${\varphi}$ -frequent probability is introduced to evaluate the degree of recurrence of subgraphs. Given a set of uncertain graphs and two real numbers ${0 < \varphi, \tau < 1}$ , the goal is to quickly find all subgraphs with ${\varphi}$ -frequent probability at least τ. Due to the NP-hardness of the problem and to the #P-hardness of computing the ${\varphi}$ -frequent probability of a subgraph, an approximate mining algorithm is proposed to produce an ${(\varepsilon, \delta)}$ -approximate set Π of “frequent subgraphs”, where ${0 < \varepsilon < \tau}$ is error tolerance, and 0 <?δ?< 1 is a confidence bound. The algorithm guarantees that (1) any frequent subgraph S is contained in Π with probability at least ((1 ? δ) /2) s , where s is the number of edges in S; (2) any infrequent subgraph with ${\varphi}$ -frequent probability less than ${\tau - \varepsilon}$ is contained in Π with probability at most δ/2. The theoretical analysis shows that to obtain any frequent subgraph with probability at least 1 ? Δ, the input parameter δ of the algorithm must be set to at most ${1 - 2 (1 - \Delta)^{1 / \ell_{\max}}}$ , where 0 <?Δ <?1, and ? max is the maximum number of edges in frequent subgraphs. Extensive experiments on real uncertain graph data verify that the proposed algorithm is practically efficient and has very high approximation quality. Moreover, the difference between the probabilistic semantics and the expected semantics on mining frequent subgraphs over uncertain graph data has been discussed in this paper for the first time.  相似文献   

10.
In this paper, we present a new parametric parallel algorithm for semigroup computation on mesh with reconfigurable buses (MRB). Givenn operands, our parallel algorithm can be performed in $O(2^{(2c^2 + 3c)/(4c + 1)} n^{1/(8c + 2)} )$ , time on a $2^{(c^2 - c)/(8c + 2)} n^{(5c + 1)/(8c + 2)} \times 2^{(c - c^2 )/(8c + 2)} n^{(3c + 1)/(8c + 2)} $ MRB ofn processors, where $0 \leqslant c \leqslant O(\sqrt {\log _2 n} )$ . Specifically, whenc=0, it takes $O(\sqrt n )$ time on the $\sqrt n \times \sqrt n $ MRB and is equal to the result on the mesh-connected computers; whenc=1, it takesO(n 1/10) time on then 3/5×n 2/5 MRB and is equal to the previous result on the mesh-connected computers with segmented multiple buses; whenc=2, it takesO(n 1/18) time on the 21/9 n 11/18×2(?1/9) n 7/18 MRB; when $O(\sqrt {\log _2 n} )$ , it takesO(log2 n) time and is equal to the previous result on the MRB. Consequently, our results can be viewed as a unification of some best known results on different parallel computational models.  相似文献   

11.
The discrete logarithm problem modulo a composite??abbreviate it as DLPC??is the following: given a (possibly) composite integer n??? 1 and elements ${a, b \in \mathbb{Z}_n^*}$ , determine an ${x \in \mathbb{N}}$ satisfying a x ?=?b if one exists. The question whether integer factoring can be reduced in deterministic polynomial time to the DLPC remains open. In this paper we consider the problem ${{\rm DLPC}_\varepsilon}$ obtained by adding in the DLPC the constraint ${x\le (1-\varepsilon)n}$ , where ${\varepsilon}$ is an arbitrary fixed number, ${0 < \varepsilon\le\frac{1}{2}}$ . We prove that factoring n reduces in deterministic subexponential time to the ${{\rm DLPC}_\varepsilon}$ with ${O_\varepsilon((\ln n)^2)}$ queries for moduli less or equal to n.  相似文献   

12.
O. G. Mancino 《Calcolo》1970,7(3-4):275-287
LetX be a point of the realn-dimensional Euclidean space ? n ,G(X) a given vector withn real components defined in ? u ,U an unknown vector withs real components,K a known vector withs real components andA a given reals×n matrix of ranks. Assuming that, for every pair of pointsX 1 , X2of ? n ,G(X) satisfies the conditions $$(G(X_1 ) - G(X_2 ), X_1 - X_2 ) \geqslant o (X_1 - X_2 , X_1 - X_2 )$$ and $$\left\| {(G(X_1 ) - G(X_2 )\left\| { \leqslant M} \right\|X_1 - X_2 )} \right\|$$ wherec andM are positive constants, we prove that a unique solution of the system $$\left\{ \begin{gathered} G(X) + A ^T U = 0 \hfill \\ AX = K \hfill \\ \end{gathered} \right.$$ exists and we show a method for finding such a solution  相似文献   

13.
We show that the promise problem of distinguishing n-bit strings of relative Hamming weight \({1/2 + \Omega(1/{\rm lg}^{d-1} n)}\) from strings of weight \({1/2 - \Omega(1/{\rm \lg}^{d - 1} n)}\) can be solved by explicit, randomized (unbounded fan-in) poly(n)-size depth-d circuits with error \({\leq 1/3}\) , but cannot be solved by deterministic poly(n)-size depth-(d+1) circuits, for every \({d \geq 2}\) ; and the depth of both is tight. Our bounds match Ajtai’s simulation of randomized depth-d circuits by deterministic depth-(d + 2) circuits (Ann. Pure Appl. Logic; ’83) and provide an example where randomization buys resources. To rule out deterministic circuits, we combine Håstad’s switching lemma with an earlier depth-3 lower bound by the author (Computational Complexity 2009). To exhibit randomized circuits, we combine recent analyses by Amano (ICALP ’09) and Brody and Verbin (FOCS ’10) with derandomization. To make these circuits explicit, we construct a new, simple pseudorandom generator that fools tests \({A_1 \times A_2 \times \cdots \times A_{{\rm lg}{n}}}\) for \({A_i \subseteq [n], |A_{i}| = n/2}\) with error 1/n and seed length O(lg n), improving on the seed length \({\Omega({\rm lg}\, n\, {\rm lg}\, {\rm lg}\, n)}\) of previous constructions.  相似文献   

14.
Quadrature formulas based on the “practical” abscissasx k=cos(k π/n),k=0(1)n, are obtained for the numerical evaluation of the weighted Cauchy principal value integrals $$\mathop {\rlap{--} \smallint }\limits_{ - 1}^1 (1 - x)^\alpha (1 + x)^\beta (f(x))/(x - a)){\rm E}dx,$$ where α,β>?1 andaε(?1, 1). An interesting problem concerning these quadrature formulas is their convergence for a suitable class of functions. We establish convergence of these quadrature formulas for the class of functions which are Hölder-continuous on [?1, 1].  相似文献   

15.
For a finite alphabet ∑ we define a binary relation on \(2^{\Sigma *} \times 2^{2^{\Sigma ^* } } \) , called balanced immunity. A setB ? ∑* is said to be balancedC-immune (with respect to a classC ? 2Σ* of sets) iff, for all infiniteL εC, $$\mathop {\lim }\limits_{n \to \infty } \left| {L^{ \leqslant n} \cap B} \right|/\left| {L^{ \leqslant n} } \right| = \tfrac{1}{2}$$ Balanced immunity implies bi-immunity and in natural cases randomness. We give a general method to find a balanced immune set'B for any countable classC and prove that, fors(n) =o(t(n)) andt(n) >n, there is aB εSPACE(t(n)), which is balanced immune forSPACE(s(n)), both in the deterministic and nondeterministic case.  相似文献   

16.
Mirrorsymmetric matrices, which are the iteraction matrices of mirrorsymmetric structures, have important application in studying odd/even-mode decomposition of symmetric multiconductor transmission lines (MTL). In this paper we present an efficient algorithm for minimizing ${\|AXB-C\|}$ where ${\|\cdot\|}$ is the Frobenius norm, ${A\in \mathbb{R}^{m\times n}}$ , ${B\in \mathbb{R}^{n\times s}}$ , ${C\in \mathbb{R}^{m\times s}}$ and ${X\in \mathbb{R}^{n\times n}}$ is mirrorsymmetric with a specified central submatrix [x ij ] ri, jn-r . Our algorithm produces a suitable X such that AXB = C in finitely many steps, if such an X exists. We show that the algorithm is stable any case, and we give results of numerical experiments that support this claim.  相似文献   

17.
Raz’s parallel repetition theorem (SIAM J Comput 27(3):763–803, 1998) together with improvements of Holenstein (STOC, pp 411–419, 2007) shows that for any two-prover one-round game with value at most ${1- \epsilon}$ 1 - ? (for ${\epsilon \leq 1/2}$ ? ≤ 1 / 2 ), the value of the game repeated n times in parallel on independent inputs is at most ${(1- \epsilon)^{\Omega(\frac{\epsilon^2 n}{\ell})}}$ ( 1 - ? ) Ω ( ? 2 n ? ) , where ? is the answer length of the game. For free games (which are games in which the inputs to the two players are uniform and independent), the constant 2 can be replaced with 1 by a result of Barak et al. (APPROX-RANDOM, pp 352–365, 2009). Consequently, ${n=O(\frac{t \ell}{\epsilon})}$ n = O ( t ? ? ) repetitions suffice to reduce the value of a free game from ${1- \epsilon}$ 1 - ? to ${(1- \epsilon)^t}$ ( 1 - ? ) t , and denoting the input length of the game by m, it follows that ${nm=O(\frac{t \ell m}{\epsilon})}$ n m = O ( t ? m ? ) random bits can be used to prepare n independent inputs for the parallel repetition game. In this paper, we prove a derandomized version of the parallel repetition theorem for free games and show that O(t(m?)) random bits can be used to generate correlated inputs, such that the value of the parallel repetition game on these inputs has the same behavior. That is, it is possible to reduce the value from ${1- \epsilon}$ 1 - ? to ${(1- \epsilon)^t}$ ( 1 - ? ) t while only multiplying the randomness complexity by O(t) when m = O(?). Our technique uses strong extractors to “derandomize” a lemma of Raz and can be also used to derandomize a parallel repetition theorem of Parnafes et al. (STOC, pp 363–372, 1997) for communication games in the special case that the game is free.  相似文献   

18.
Based on spatial conforming and nonconforming mixed finite element methods combined with classical L1 time stepping method, two fully-discrete approximate schemes with unconditional stability are first established for the time-fractional diffusion equation with Caputo derivative of order \(0<\alpha <1\). As to the conforming scheme, the spatial global superconvergence and temporal convergence order of \(O(h^2+\tau ^{2-\alpha })\) for both the original variable u in \(H^1\)-norm and the flux \(\vec {p}=\nabla u\) in \(L^2\)-norm are derived by virtue of properties of bilinear element and interpolation postprocessing operator, where h and \(\tau \) are the step sizes in space and time, respectively. At the same time, the optimal convergence rates in time and space for the nonconforming scheme are also investigated by some special characters of \(\textit{EQ}_1^{\textit{rot}}\) nonconforming element, which manifests that convergence orders of \(O(h+\tau ^{2-\alpha })\) and \(O(h^2+\tau ^{2-\alpha })\) for the original variable u in broken \(H^1\)-norm and \(L^2\)-norm, respectively, and approximation for the flux \(\vec {p}\) converging with order \(O(h+\tau ^{2-\alpha })\) in \(L^2\)-norm. Numerical examples are provided to demonstrate the theoretical analysis.  相似文献   

19.
We study certain properties of Rényi entropy functionals $H_\alpha \left( \mathcal{P} \right)$ on the space of probability distributions over ?+. Primarily, continuity and convergence issues are addressed. Some properties are shown to be parallel to those known in the finite alphabet case, while others illustrate a quite different behavior of the Rényi entropy in the infinite case. In particular, it is shown that for any distribution $\mathcal{P}$ and any r ∈ [0,∞] there exists a sequence of distributions $\mathcal{P}_n$ converging to $\mathcal{P}$ with respect to the total variation distance and such that $\mathop {\lim }\limits_{n \to \infty } \mathop {\lim }\limits_{\alpha \to 1 + } H_\alpha \left( {\mathcal{P}_n } \right) = \mathop {\lim }\limits_{\alpha \to 1 + } \mathop {\lim }\limits_{n \to \infty } H_\alpha \left( {\mathcal{P}_n } \right) + r$ .  相似文献   

20.
In this paper, We propose a simple and practical method (that works only for triangular fuzzy numbers) to solve an arbitrary fully fuzzy linear system (FFLS) in the form $\widetilde{A}\otimes \widetilde{x}=\widetilde{b},$ where $\widetilde{A}_{n \times n}$ is a fuzzy matrix, $\widetilde{x}$ and $\widetilde{b}$ are n × 1 fuzzy vectors. The idea of the presented method is constructed based on the extending 0-cut and 1-cut solution of original fully fuzzy linear systems (FFLS). We also define a fuzzy solution of FFLS and establish the necessary and sufficient conditions for the uniqueness of a fuzzy solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号