首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
针对受加性高斯白噪声(AWGN)与椒盐噪声(SPIN)以及随机值冲击噪声(RVIN)组成的混合噪声污染的图像进行去噪的问题,提出一种在现有加权编码算法的基础上将图像稀疏表示和非局部相似先验融合的改进算法。首先,利用基于字典的图像稀疏表示构建去噪变分模型,对模型中的数据保真项设计一个权重因子来抑制冲击噪声的干扰;其次,利用非局部平均思想对混合噪声图像进行初始去噪,在得到的图像中构建掩膜矩阵将冲击噪声点排除进而求取非局部相似先验知识;最后,将非局部相似先验与稀疏先验融合进变分模型的正则项中,求解变分模型得到最终去噪图像。实验结果表明,在不同的噪声比率下,所提算法与模糊加权非局部平均算法相比,峰值信噪比(PSNR)提高了1.7 dB,特征相似性指数(FSIM)提高了0.06;与加权编码算法相比,PSNR提高了0.64 dB,FSIM提高了0.03。该算法对于纹理较强的图像可以显著提升去噪效果,能有效地保留图像的本真信息。  相似文献   

2.
基于粒子群优化的Shearlet自适应图像去噪   总被引:1,自引:0,他引:1  
研究Shearlet变换域图像去噪阈值选取的问题,提出Shearlet变换域图像去噪自适应阈值选取方法.该方法根据Shear-let变换域不同尺度和方向系数的分布特性,采用粒子群优化算法自适应地确定各尺度和方向的最优阈值,实现基于图像内容的自适应去噪.仿真实验表明,该方法能有效滤除图像的噪声,较好地保留图像的边缘信息.同时,去噪后图像具有更高的峰值信噪比(PSNR).  相似文献   

3.
图像去噪是图像处理领域的一个基础研究课题,利用正则化建模方式解决图像去噪问题的关键在于正则化约束项的选择。通过分析图像结构信息,文章假定图像存在多尺度的结构特征,提出了以多尺度相似先验作为正则化约束项的非局部图像去噪模型。该算法利用奇异值分解和硬阈值方法对获得的多尺度相似矩阵进行协同去噪,通过数值实验表明,可以获得性能较好的去噪效果。  相似文献   

4.
NLM (non-local means)滤波成为图像去噪关注的热点.该方法利用在图像中的结构特征冗余,对消除白噪声的效果较好,但对有色噪声效果不理想.对其作了改进,引入广义高斯分布模型以及马氏距离来取代欧氏距离,并且将其推广到图像序列的去噪领域中.结果表明,相较于NLM方法,该方法能够较好地抑制有色噪声,明显地改善了去除噪声效果,在保留图像纹理边缘的同时,有效地去除了图像中的噪声信息.  相似文献   

5.
自适应Shearlet域约束的全变差图像去噪   总被引:1,自引:0,他引:1       下载免费PDF全文
采用传统非线性扩散图像去噪方法得到的图像边缘模糊,为此,提出一种有限自适应Shearlet域约束的极小化变分图像去噪算法。通过自适应阈值收缩Shearlet系数,保留图像纹理与边缘空间,利用全变差极小化平滑空间,建立全变差正则化的能量泛函去噪模型。实验结果表明,该算法能在减少图像噪声的同时,保留图像边缘信息,对含有丰富纹理结构的图像,去噪性能更佳。  相似文献   

6.
孙少超 《计算机科学》2016,43(Z11):208-209, 236
利用GMM模型对自然图像块进行学习,对高斯分量的协方差矩阵做PCA,用其特征向量组成的矩阵作为子字典,用特征值 的大小作为对稀疏系数加权的依据,并将该模型应用到CSR模型中得到一种新的去噪模型,并给出模型的优化算法。为了验证提出的模型的有效性,设计了比较的仿真实验,实验表明与一些先进的模型相比,该方法具有优势。  相似文献   

7.
常见的图像去噪方法只是单独地利用了无噪图像或含噪图像的先验信息,并没有将这两种图像的先验信息有效地结合起来。针对这个问题,提出一种 联合无噪图像块的先验信息和含噪图像块的非局部自相似性进行去噪的图像去噪算法。首先,对无噪图像块进行谱聚类,通过谱聚类进行学习,图像中的相似块被聚集到同一类,并将学习得到的聚类信息用于含噪图像块的聚类;然后,向量化同一类中的含噪图像块并聚集形成一个矩阵,该矩阵中包含的原始图像数据构成一个低秩矩阵;再通过一个低秩逼近过程估计出相应的原始图像数据;最后,根据逼近得到的原始图像数据重建图像。实验结果表明,相较于已有的自适应正则化的非局部均值去噪算法以及基于主成分分析和局部像素聚类的两级图像去噪算法,提出的算法不仅可以获得较大的峰值信噪比,而且还能较好地保存图像的细节,取得了更好的去噪效果。  相似文献   

8.
基于最小Bayes风险的小波域局部自适应图像去噪   总被引:1,自引:0,他引:1  
武海洋  王慧  程宝琴 《计算机应用》2010,30(12):3238-3240
简要介绍了广义高斯分布的基本概念和小波系数的分布特性,分析了BayesShrink法的原理并指出其存在的不足。以冗余小波变换为基础,利用子带内小波系数之间的相关性,提出了一种局部自适应的图像去噪策略。以当前小波系数为中心,选取尺寸合适的邻域窗口,以该窗口为单位估计相应的理想标准差和局部阈值,再通过软化处理达到系数收缩的目的。实验表明,该算法能有效滤除图像噪声,较好地保留了图像纹理和细节等重要信息,取得了较高的峰值信噪比和较好的视觉效果。  相似文献   

9.
提出了一种基于双局部阈值的小波收缩的图像去噪算法。该算法利用小波系数的幅值、空间特性以及对噪声图像的分割,得到两个局部阈值:幅度阈值和空间阈值。利用这两个局部阈值(每个区域阈值不同)对小波系数做相应的“收缩”处理和重构,从而得到一个优质的去噪图像。该算法计算简单速度快,去噪效果明显,优于其他一些去噪算法。  相似文献   

10.
张雯雯  韩裕生 《计算机应用》2018,38(9):2696-2700
针对许多图像去噪方法在去除噪声的同时容易丢失细节信息的问题,提出了一种基于非局部自相似性的低秩稀疏图像去噪算法。首先,利用基于马氏距离(MD)的块匹配方法将外部自然干净图像块分组,建立基于块组的高斯混合模型(GMM)学习非局部自相似性先验;其次,采用稳健主成分追踪(SPCP)方法,将噪声图像矩阵分解为低秩、稀疏及噪声三部分,其中稀疏矩阵包含了稀疏的有用信息;最后,通过最小化全局目标函数实现去噪。实验结果表明,提出的方法在峰值信噪比(PSNR)及结构相似性(SSIM)的结果上比EPLL、NCSR、PCLR等先进去噪算法都有较大的提升,且速度更快,去噪效果及细节保留能力都有更好的表现。  相似文献   

11.
目前的经典多尺度系统Curverlet、Contourlet存在的主要缺点之一是它们无法将连续性与数字世界进行统一处理,而Shearlet系统是目前多尺度领域内唯一满足这一性质同时还提供对图像的最优稀疏表示的多尺度系统。提出一种用限制频带的Shearlet变换来进行多尺度分析,其主要通过对图像进行快速PPFT变换,以及加权和加窗处理得到Shearlet系数,通过SURE-LET变换进行噪声估计优化分解系数,最后进行Shearlet重构得到去噪图像。实验结果表明,相比于目前的去噪算法,在PSNR、SSIM和时间上,该算法都有一定的优势。  相似文献   

12.
海涛  张雷  刘旭焱  张新刚 《计算机应用》2018,38(4):1151-1156
针对二阶偏微分方程(PDE)放大算法丢失弱边缘和纹理细节的不足,提出一种改进复扩散自适应耦合非局部变换域模型的图像放大算法。利用复扩散具有边缘定位准确的特点耦合冲击滤波器,改进复扩散模型能够较好地增强强边缘;而通过对相似图像块构成图像组的三维变换系数的稀疏特性进行建模,非局部变换域模型能够很好地利用图像中相似图像块的非局部信息,对弱边缘和纹理细节有较好的处理效果;最后利用复扩散得到图像的二阶导数作为参数实现改进复扩散模型和非局部变换域模型自适应耦合。所提算法与偏微分方程放大算法、非局部变换域放大算法和偏微分方程耦合空域非局部模型放大算法进行仿真实验比较,在强边缘、弱边缘和细节纹理具有较好的放大效果,弱边缘和纹理细节图像在平均结构相似性测度上高于改进复扩散放大算法、非局部变换域放大算法。所提算法验证了空域模型和变换域模型、局部模型和非局部模型耦合结合的有效性。  相似文献   

13.
基于双变量收缩函数的局域自适应图像去噪   总被引:1,自引:0,他引:1  
刘鑫  贺振华  黄德济 《计算机应用》2006,26(5):1030-1031
由于图像小波系数存在很大的层间相关性,引入双变量概率分布模型,基于贝叶斯估计理论,得到了相应的非线性阈值函数(双变量收缩函数);基于层内局域方差估计,利用该收缩函数得到一种局域自适应的图像去噪算法。在实验中,将该算法分别应用到实值离散小波变换域和双树复数小波变换域,并和隐马尔科夫模型的去噪方法做了比较分析。实验表明,复数小波变换的局域自适应收缩图像去噪算法去噪效果最好。  相似文献   

14.
Denoising of images is one of the most basic tasks of image processing. It is a challenging work to design an edge-preserving image denoising scheme. Extended discrete Shearlet transform (extended DST) is an effective multi-scale and multi-direction analysis method; it not only can exactly compute the Shearlet coefficients based on a multiresolution analysis, but also can provide nearly optimal approximation for a piecewise smooth function. In this paper, a new image denoising approach in extended Shearlet domain using hidden Markov tree (HMT) model is proposed. Firstly, the joint statistics and mutual information of the extended DST coefficients are studied. Then, the extended DST coefficients are modeled using an HMT model with Gaussian mixtures, which can effectively capture the intra-scale and inter-scale dependencies. Finally, the extended Shearlet HMT model is applied to image denoising. Extensive experimental results demonstrate that our extended Shearlet HMT denoising method can obtain better performances in terms of both subjective and objective evaluations than other state-of-the-art HMT denoising techniques. Especially, the proposed method can preserve edges very well while removing noise.  相似文献   

15.
基于分组字典与变分模型的图像去噪算法   总被引:1,自引:0,他引:1  
陶永鹏  景雨  顼聪 《计算机应用》2019,39(2):551-555
针对加性高斯噪声去除问题,在现有传统的K均值奇异值分解(K-SVD)字典学习算法的基础上,提出一种将字典学习与变分模型相融合的改进算法。首先,根据图像的几何和光度信息将图像进行聚类分组,再将图像组按照边缘和纹理类别进行分类,根据噪声水平和图像组类别训练一个自适应字典;其次,将通过所学字典得到的稀疏表示先验与图像本身的非局部相似先验进行融合来构建变分模型;最后,通过求解变分模型得到去噪后图像。实验结果表明,与同类去噪算法相比,当噪声比率较高时,所提算法可以解决前期算法准确性较差、纹理丢失较为严重、产生视觉伪影等问题,在视觉效果上要更为理想;同时该算法结构相似性指数有明显提高,峰值信噪比(PSNR)的值更是平均提高了10%以上。  相似文献   

16.
基于空间自适应Bayesian缩减的NSCT域图像去噪方法   总被引:1,自引:0,他引:1  
孙强  高勇  焦李成 《计算机应用》2010,30(8):2080-2084
提出了一种基于空间自适应Bayesian缩减的NSCT域图像去噪方法。该方法运用了广义高斯分布对NSCT域图像的子带系数进行建模,并通过构造各向异性的椭圆窗口来描述各个子带内系数的局部背景特性,从而建立了NSCT域空间自适应Bayesian缩减机制的图像去噪方法。通过图像去噪实验验证了所提出方法的有效性。同时,与4种具有平移不变性的Contourlet去噪方法做了对比,进一步证实了所提出方法的优良去噪性能。  相似文献   

17.
张丽  孔旭  孙忠贵 《计算机应用》2005,40(11):3327-3331
针对传统矩阵补全算法在图像重建方面的不足,提出了一种基于非局部自相似性和低秩矩阵逼近(NL-LRMA)的补全算法。首先,通过相似性度量找到图像中局部块所对应的非局部相似块,并将相应灰度信息进行向量化,从而构建出非局部相似块矩阵;然后,针对所得相似矩阵的低秩性,对其进行低秩补全操作(LRMA);最后,对补全结果进行重新组合,以达到恢复原始图像的目的。在灰度图像以及RGB图像上进行重建实验,结果表明:在经典数据集上,NL-LRMA算法要比原LRMA算法在平均峰值信噪比(PSNR)上高出4~7 dB;同时,新算法在视觉效果与PSNR值方面也明显优于迭代重加权核范数(IRNN)、加权核范数(WNNM)、LRMA等传统算法。总之,所提算法对传统算法在自然图像重建方面的不足进行了有效弥补,从而为图像重建提供了一种行之有效的解决方案。  相似文献   

18.
针对全变分(TV)模型在去除图像噪声时容易产生阶梯效应的缺点,将二阶总广义变分(TGV)作为正则项应用于全变分模型中可以有效地去除阶梯效应,并且还能够更好地保持图像边缘纹理结构;利用非局部均值滤波算法的思想来构造非局部微分算子,将非局部微分算子应用于总广义变分模型中,综合提出了一种基于非局部总广义变分的图像去噪新模型。新模型充分利用了图像的全局信息进行去噪。实验结果显示了该模型的有效性和优越性。  相似文献   

19.
张丽  孔旭  孙忠贵 《计算机应用》2020,40(11):3327-3331
针对传统矩阵补全算法在图像重建方面的不足,提出了一种基于非局部自相似性和低秩矩阵逼近(NL-LRMA)的补全算法。首先,通过相似性度量找到图像中局部块所对应的非局部相似块,并将相应灰度信息进行向量化,从而构建出非局部相似块矩阵;然后,针对所得相似矩阵的低秩性,对其进行低秩补全操作(LRMA);最后,对补全结果进行重新组合,以达到恢复原始图像的目的。在灰度图像以及RGB图像上进行重建实验,结果表明:在经典数据集上,NL-LRMA算法要比原LRMA算法在平均峰值信噪比(PSNR)上高出4~7 dB;同时,新算法在视觉效果与PSNR值方面也明显优于迭代重加权核范数(IRNN)、加权核范数(WNNM)、LRMA等传统算法。总之,所提算法对传统算法在自然图像重建方面的不足进行了有效弥补,从而为图像重建提供了一种行之有效的解决方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号