首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
采用双槽电化学腐蚀法在p+单晶硅表面制备多孔硅层,然后在多孔硅表面沉积形成Pt薄膜电极,制备出多孔硅气敏元件样品。利用SEM技术分析多孔硅的表面形貌,研究了腐蚀条件对多孔硅的孔隙率、横向Ⅰ-Ⅴ特性及低浓度NO2气敏特性的影响。结果表明,多孔硅的横向Ⅰ-Ⅴ特性表现出非整流的欧姆接触;多孔硅的孔隙率及其对低浓度NO2的灵敏度均随腐蚀电流密度的增大而增加。当腐蚀电流密度为90mA/cm^2,腐蚀时间为30min时.所得多孔硅气敏元件对体积分数为200×10^-9的NO2的灵敏度可达到5.25,响应时间与恢复时间约分别为14min与10min。  相似文献   

2.
针对多孔硅气敏传感器在室温下对NO2气体灵敏度较低、选择性不强的问题,采用双槽电化学腐蚀法制备多孔硅,然后在多孔硅顶部溅射沉积金属钨薄膜并经高温热处理氧化形成WO3纳米线,制备出WO3纳米线修饰多孔硅结构及其气敏传感器,对WO3纳米线/多孔硅材料进行了SEM和XRD分析,测试了传感器室温下对NO2的气敏特性。结果表明,制备WO3纳米线的最佳热处理条件是700℃,此温度下增加金属钨膜溅射时间可提升WO3纳米线的生长密度? 所制备的传感器对NO2气体表现出反型气敏响应,特别是溅射1min金属钨的样品显示出优异的NO2室温探测能力与选择性,对4×10-6NO的气敏灵敏度是单纯多孔硅样品的 5.8倍。  相似文献   

3.
用气相反应法制备纳米WO3气敏材料   总被引:5,自引:0,他引:5  
材料的制备是研制半导体气敏传感器的关键环节.用气相反应法,以纯钨丝为原料,制备了WO3粉末,又以此WO3粉末为基材,制作了NO2气敏传感元件.在性能测试中发现,该元件对低浓度(10-10)NO2灵敏,灵敏度可达10倍左右,而且响应迅速,响应时间为1.5 s.文中从材料的微观结构入手,对材料的敏感机理作了分析.  相似文献   

4.
研究了多孔硅层厚度,孔隙率以及多孔硅中微晶粒尺寸三个微结构参数对其热绝缘性的影响机制.实验选用p ,p-两种掺杂浓度的硅片基底,采用电化学腐蚀法,通过改变腐蚀时间和腐蚀电流密度获得不同微结构参数的多孔硅层.分别采用显微拉曼光谱法及测量显微镜聚焦法测量了样品的热导率和厚度.研究发现,多孔硅层厚度影响热量传输路径,而孔隙率和微晶粒尺寸通过降低热导率从而使多孔硅的绝热性增强.  相似文献   

5.
WO3纳米材料的NO2气敏特性   总被引:10,自引:1,他引:10  
通过固相掺杂法制得一系列不同掺杂量的WO3纳米粉体,利用X射线衍射仪,透射电镜等测试手段分析了材料的微观结构,测试了元件的气敏,分现,适量掺杂SiO2有利于提高WO3纳米材料对NO2气体的灵敏度,其中掺杂量为3%(质量分数)的烧结型气敏元件在120℃下对NO2有较高的灵敏度的选择性,是一种工作温度较低气敏性能很好的NO2气敏元件。  相似文献   

6.
为了研究WO3的常温气敏性能,以热氧化钨丝的方法制备WQ3纳米材料并制作厚膜气敏元件,通过XRD对材料的晶体结构进行表征,对敏感元件进行了气敏性能测试,测得该元件在常温、0.4W/cm2紫外光(波长:300~450nm)辐照条件下对50ppm的NO2的灵敏度S=15.4,响应时间τres=2.5s,恢复时间τrec=18.1s;在加热功率为0.81W条件下,元件对50ppm NO2的灵敏度为S=22.5,响应时间τres=1.5s,恢复时间τrec=10.7s,研究了灵敏度对光功率密度和加热功率的依赖关系,实验结果表明WO3纳米材料在常温、紫外光照条件下对NO2具有较好的气敏性能.  相似文献   

7.
采用射频反应磁控溅射方法制备掺杂多壁碳纳米管(MWCNTs)的snO2薄膜材料,并在此基础之上制作了N02气敏传感器,使用扫描电子显微镜(SEM)和X射线衍射仪(XRD)研究了SnO2/MWCNTs薄膜材料的表面形貌、物质组份材料特性,采用气敏元件测试系统来分析优越感的气敏效应,包括灵敏度、选择性、响应-恢复等特性,实验结果表明该气敏传感器对超低浓度(10ppb)NO2气体有很好的灵敏度,对干扰气体不敏感,提出了气敏机理解释实验现象.  相似文献   

8.
超微粒氧化铁的制备与气敏性能的研究   总被引:1,自引:0,他引:1  
本文采用PCVD法制备了纳米级的超微粒氧化铁气敏材料.用这种材料制备的气敏元件具有工作温度低、灵敏度高、响应速度快、稳定性好等优点.不需掺杂,改变工作温度和热处理温度便可获得对酒精蒸汽和C_2H_2气体具有选择性的气敏元件.这种材料像SnO_2,ZnO气敏材料一样,在205℃左右出现电导极值.超微粒α-Fe_2O_3的气敏机制属表面控制型.  相似文献   

9.
Zn2+掺杂WO3基气敏材料的制备及气敏性能研究   总被引:3,自引:0,他引:3  
通过加热分解钨酸制备的WO3与Zn(NO3)2溶液超声分散,制备出了掺杂Zn2 的WO3基气敏材料。研究了Zn2 掺杂对WO3气敏材料性能的影响。结果发现,Zn2 掺杂WO3基传感器对H2S有较好的气敏性能,在常温下对极低浓度(5×10-6)H2S也有很高的灵敏度(56),适量掺杂可以提高其灵敏度,Zn2 掺杂n_Zn~(2 )/n_W=2%的WO3基传感器的灵敏度最大,对50×10-6H2S在200℃灵敏度可达1800。通过X-射线衍射仪(XRD),比表面测定仪(BET)对材料进行了表征,比表面积范围介于2.5~3.5m2/g之间。结合有关理论,对元件气敏现象及机理进行了解释。  相似文献   

10.
将4种质量分数(5%,10%,20%,30%)的Co(CH3COO)24H2O混合到四针状纳米ZnO原料里,采用超声化学浸泡法制备出表面改性四针状纳米ZnO颗粒。通过XRD和TEM分析了表面改性四针状纳米ZnO结构的物相和形貌特征。随着Co(CH3COO)24H2O质量分数增大,Co3O4相明显出现,Co3O4相沉积在ZnO表面上。研究表明:以表面改性四针状纳米ZnO粉末为原料制备的厚膜气敏元件,与纯ZnO气敏元件相比,Co(CH3COO)24H2O质量分数为5%的气敏元件对酒精和甲醇有较高的灵敏度,并讨论了表面改性对气敏性能的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号