首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Effects of statistical process variation on the 0.25-μm CMOS performance have been accurately characterized by using a new calibrated TCAD methodology. To conduct the variation analysis, a series of TCAD simulations was conducted on the basis of DoE (design of experiments) with optimum variable transformations, which resulted in RSF's (response surface functions) for threshold voltage (Vth) and saturation drain current (Ids). A new global calibration of the RSF model based on experimental data gives excellent accuracy within 0.02 V error in Vth and 3% error in Ids. Using calibrated RSF, statistical process variation effects on the device characteristics have been quantitatively evaluated for each process recipe. It is found that variation of the gate-oxide formation process shows the most significant effect on the NMOS ΔIds in the production process. Furthermore we have designed an optimized 0.25-μm CMOS process and device on the basis of the RSF and also predicted the process variation effects on the device performance. It is shown that the Vth and Ids variations of the 0.25-μm CMOS exhibit less than 10% Ids variation in the production level process, which is similar to the value of 0.35-μm CMOS experimental data. Additional TCAD simulations for MOS model parameter generation of the 0.25-μm device was also conducted to allow circuit-designers to use predictive worst case circuit design parameters before experimental chip fabrication  相似文献   

2.
To improve the performance and reliability of deep submicron MOS devices, a gate-recessed MOSFET (GR-MOSFET), which has a selectively halo-doped recessed channel and a deep graded source/drain formed without counterdoping, is proposed. The GR-MOS structure, which adopts a new doping concept, eliminates the tradeoff between drain-induced barrier lowering (DIBL) and hot-carrier effect, which are important to deep submicron device design. It also reduces the VT lowering effect and the lateral electric field at the drain. A 0.25-μm GR-MOSFET with a 10-nm gate oxide has exhibited 15% higher transconductance and 10% increased saturation current at VD=V G=3.3 V, 1 V higher BVDSS, and six times less substrate current compared with an LDD-MOSFET of the same device dimensions  相似文献   

3.
The normal and reverse short-channel effect of LDD MOSFET's with lateral channel-engineering (pocket or halo implant) has been investigated. An analytical model is developed which can predict Vth as a function of Leff, VDS, VBS, and pocket parameters down to 0.1-μm channel length. The new model shows that the Vth roll-up component due to pocket implant has an exponential dependence on channel length and is determined roughly by (Np)¼Lp. The validity of the model is verified by both experimental data and two-dimensional (2-D) numerical simulation. On the basis of the model, a methodology to optimize the minimum channel length Lmin is presented. The theoretical optimal pocket implant performance is to achieve an Lmin approximately 55~60% that of a uniform-channel MOSFET without pocket implant, which is a significant (over one technology generation) improvement. The process design window of pocket implant is analyzed. The design tradeoff between the improvement of short-channel immunity and the other device electrical performance is also discussed  相似文献   

4.
Modeling statistical dopant fluctuations in MOS transistors   总被引:1,自引:0,他引:1  
The impact of statistical dopant fluctuations on the threshold voltage VT and device performance of silicon MOSFET's is investigated by means of analytical and numerical modeling. A new analytical model describing dopant fluctuations in the active device area enables the derivation of the standard deviation, σVT , of the threshold voltage distribution for arbitrary channel doping profiles. Using the MINIMOS device simulator to extend the analytical approach, it is found that σVT, can be properly derived from two-dimensional (2-D) or three-dimensional (3-D) simulations using a relatively coarse simulation grid. Evaluating the threshold voltage shift arising from dopant fluctuations, on the other hand, calls for full 3-D simulations with a numerical grid that is sufficiently refined to represent the discrete nature of the dopant distribution. The average VT-shift is found to be positive for long, narrow devices, and negative for short, wide devices. The fast 2-D MINIMOS modeling of dopant fluctuations enables an extensive statistical analysis of the intrinsic spreading in a large set of compact model parameters for state-of-the-art CMOS technology. It is predicted that VT-variations due to dopant fluctuations become unacceptably large in CMOS generations of 0.18 μm and beyond when the present scaling scenarios are pursued. Parameter variations can be drastically reduced by using alternative device designs with ground-plane channel profiles  相似文献   

5.
This paper presents a floating-body charge monitoring technique, which does not require the use of body contacts on the device being monitored. A charge monitor is placed along side with the circuit that is susceptible to the floating-body effects in partially depleted (PD) SOI CMOS circuits. It mimics the circuit topology and operating history of a concerned circuit, specifically the worst-case body voltage of the critical device(s) under consideration. The monitoring is achieved by intentionally triggering a parasitic bipolar current pulse and setting the a state recording latch, which subsequently activates the speed recovering circuitry that compensates the loss of performance at critical circuit nets due to the presence of parasitic bipolar current. Implementation examples are given and described. This technique restores performance and improves timing robustness of the MUX-type and SRAM bit line circuits by minimizing the delay degradation or variation from parasitic bipolar currents.  相似文献   

6.
Electrical characteristics of 0°/±45°/90°-orientation 0.5-μm CMOSFETs with source/drain regions fabricated by three ion-implantation methods are discussed. For asymmetrical one-sided 7°-implantation method, large-device-orientation dependent fluctuation and asymmetry were observed in (saturation drain current ID and maximum substrate current IB of both n- and p-MOSFETs/threshold voltage VT of p-MOSFETs) and (ID of n-MOSFETs/I B of both n- and p-MOSFETs), respectively. Almost comparable characteristics were obtained for n-MOSFETs fabricated by symmetrical 0°-implantation and 7°×4-implantation methods. However, I D difference in p-MOSFETs between 0°/90°- and ±45°-orientation devices, which may be affected by intraplanar anisotropy of hole drift velocity, was observed independently of the ion-implantation method  相似文献   

7.
We report room-temperature 0.07-μm CMOS inverter delays of 13.6 ps at 1.5 V and 9.5 ps at 2.5 V for an SOI substrate; 16 ps at 1.5 V and 12 ps at 2.5 V for a bulk substrate. This is the first room-temperature sub-10 ps inverter ring oscillator delay ever reported. PFETs with very high drive current and reduction in parasitic resistances and capacitances for both NFETs and PFETs, realized by careful thermal budget optimization, contribute to the fast device speed. Moreover, the fast inverter delay was achieved without compromising the device short-channel characteristics. At Vdd=1.5 V and Ioff ~2.5 nA/μm, minimum Leff is about 0.085 μm for NFETs and 0.068 μm for PFETs. PFET Ion is 360 μA/μm, which is the highest value ever reported at comparable Vdd and Ioff. The SOI MOSFET has about one order of magnitude higher Ioff than a bulk MOSFET due to the floating-body effect. At around 0.07 μm Leff, the NFET cut-off frequencies are 150 GHz for SOI and 135 GHz for bulk. These performance figures suggest that subtenth-micron CMOS is ready for multi-gigahertz digital circuits, and has good potential for RF and microwave applications  相似文献   

8.
The conventional, 1-D definition of “effective channel length” (Leff) is examined in light of the spatial dependence of channel sheet resistance in 0.1-μm MOSFETs calculated from a 2-D device model. For short-channel devices, the sheet resistance deviates significantly from the uniform, long-channel behavior that L eff in general is different from the “metallurgical channel length”, Lmet. While geometrical (charge-sharing) effects tend to make Leff slightly shorter than Lmet, lateral source-drain doping gradients, especially when coupled with retrograde channel doping, can make Leff substantially longer than Lmet. The latter might help explain the apparent “excess” short channel effect often observed in 0.1-μm CMOS devices  相似文献   

9.
This paper reports the first successful fabrication of high-performance, 0.1-μm p+-gate pseudomorphic heterojunction-FET's (HJFET's). By introducing the two-step dry-etching technique which compensates for the poor dry-etching resistance of PMMA, 0.1-μm or less gate-openings with a high aspect-ratio of 3.5 in SiO 2 film are achieved. In addition, by using the gate electrode filling technique with selective MOMBE p+-GaAs growth, 0.1-μm voidless p+-GaAs gate electrodes with a high aspect-ratio are achieved for the first time. The fabrication technology leads to a reduction of external gate fringing capacitance (Ceext f) in a T-shaped gate-structure and an improvement in gate turn-on voltage. The fabricated 0.1-μm, T-shaped, p+-gate n-Al0.2Ga0.8As/In0.25Ga0.75 As HJFET exhibits a high gate turn-on voltage (Vf) of about 0.9 V, and a good gmmax of 435 mS/mm. Also, an excellent microwave performance of fT=121 GHz and fmax =144 GHz is achieved due to the Cextf reduction. The technology and device show great promise for future high-speed applications, such as in power devices, MMIC's, and digital IC's  相似文献   

10.
We present a physical parameter extraction methodology for BSIM3v3 to generate accurate pre-silicon parameters (parameters created before device fabrication). Using this method, the parameters of the 0.20-μm process device can be generated from a 0.25-μm technology with 5% accuracy in a few minutes. We applied this method in optimizing the devices of our microprocessor in the early stages of design  相似文献   

11.
In designing charge-coupled device (CCD) image sensors, it is essential to be able to estimate charge handling capacity. Because electrons have thermal energy, storing electrons in a well in a CCD register requires a sufficient potential barrier height to keep them from overflowing. As the quantity of electrons in a well depends on the barrier height, knowledge of this height is indispensable for precise estimation of the charge handling capacity. The authors have derived an expression describing the barrier height on the basis of thermionic emission, assuming current coefficient I0 and well capacitance C. We derived the current coefficient I0 and well capacitance C with computer simulations and from the results estimate the magnitude of the barrier height for a typical Vertical-CCD (V-CCD) structure. We have also examined barrier height dependence on structural parameters. Finally, we determined the barrier heights experimentally, and our results support the values obtained in the simulation  相似文献   

12.
A new degradation mechanism of PM-HEMT's subsequent to hot electron stress tests or high temperature storage tests is presented. A noticeable increase in drain-to-source current, IDS, is observed after the tests. We show that this IDS variation is slowly recoverable and is correlated with the presence of deep levels in the device. Stress tests cause a variation of trapped charge. Trapping of holes created by impact-ionization and/or thermally stimulated electron detrapping induce a variation of the net negative trapped charge, leading to a decrease in the threshold voltage, VT and a consequent increase in IDS. The correlation between g mΔVT and ΔIDS clearly demonstrates that the variation of trapped charge induced by hot electron tests is localized under the gate  相似文献   

13.
A CMOS bandgap reference circuit with sub-1-V operation   总被引:10,自引:0,他引:10  
This paper proposes a CMOS bandgap reference (BGR) circuit, which can successfully operate with sub-1-V supply, In the conventional BGR circuit, the output voltage Vref is the sum of the built-in voltage of the diode Vf and the thermal voltage VT of kT/q multiplied by a constant. Therefore, Vref is about 1.25 V, which limits a low supply-voltage operation below 1 V. Conversely, in the proposed BGR circuit, Vref has been converted from the sum of two currents; one is proportional to Vf and the other is proportional to VT. An experimental BGR circuit, which is simply composed of a CMOS op-amp, diodes, and resistors, has been fabricated in a conventional 0.4-μm flash memory process. Measured Vref is 518±15 mV (3σ) for 23 samples on the same wafer at 27-125°C  相似文献   

14.
We report data on GaAsSb single-quantum-well lasers grown on GaAs substrates. Room temperature pulsed emission at 1.275 μm in a 1250-μm-long device has been observed. Minimum threshold current densities of 535 A/cm2 were measured in 2000-μm-long lasers. We also measured internal losses of 2-5 cm-1, internal quantum efficiencies of 30%-38% and characteristic temperatures T0 of 67°C-77°C. From these parameters, a gain constant G0 of 1660 cm-1 and a transparency current density Jtr of 134 A/cm2 were calculated. The results indicate the potential for fabricating 1.3-μm vertical-cavity surface-emitting lasers from these materials  相似文献   

15.
A cutoff frequency, fT, of 85 GHz was measured on a fully-depleted silicon-on-insulator (FDSOI) n-MOSFET with a gate length of 0.15 μm. The p-MOSFET with 0.22-μm gate length has an fT of 42 GHz. The high-frequency equivalent circuits were derived from scattering parameters for MOSFETs with various gate lengths. The effects of gate length and other device parameters on the performance of FDSOI MOSFETs at RF are discussed  相似文献   

16.
The millimeter-wave performance is reported for Al0.48In0.52As-Ga0.47In0.53 As high-electron-mobility transistors (HEMTs) with 0.2-μm and 0.1-μm-long gates on material grown by molecular-beam epitaxy on semi-insulating InP substrates. Devices of 50-μm width exhibited extrinsic transconductances of 800 and 1080 mS/mm, respectively. External fT (maximum frequency of oscillation) of 120 and 135 GHz, respectively, were measured. A maximum fT of 170 GHz was obtained from a 0.1×200-μm2 device. A minimum noise figure of 0.8 dB and associated gain of 8.7 dB were obtained from a single-stage amplifier at frequencies near 63 GHz  相似文献   

17.
Short-channel effects, substrate leakage current, and average electron velocity are investigated for 0.1-μm-gate-length GaAs MESFETs fabricated using the SAINT (self-aligned implantation for n+-layer technology) process. The threshold-voltage shift was scaled by the aspect ratio of the channel thickness to the gate length ( a/Lg). The substrate leakage current in a sub-quarter-micrometer MESFET is completely suppressed by the buried p layers and shallow n+-layers. The average electron velocity for 0.1- to 0.2-μm-gate-length FETs is estimated to be 3×106 cm/s from the analysis of intrinsic FET parameters. This high value indicates electron velocity overshoot. Moreover, a very high fT of 93.1 GHz has been attained by the 0.1-μm SAINT MESFET  相似文献   

18.
We report submicron transferred-substrate AlInAs/GaInAs heterojunction bipolar transistors (HBT's). Devices with 0.4-μm emitter and 0.4-μm collector widths have 17.5 dB unilateral gain at 110 GHz. Extrapolating at -20 dB/decade, the power gain cutoff frequency fmax is 820 GHz. The high fmax, results from the scaling of HBT's junction widths, from elimination of collector series resistance through the use of a Schottky collector contact, and from partial screening of the collector-base capacitance by the collector space charge  相似文献   

19.
We employ an advanced simulation method to investigate the effects of silicon layer properties on hot-electron-induced reliability for two 0.1-μm SOI n-MOSFET design strategies. The simulation approach features a Monte Carlo device simulator in conjunction with commercially available process and device simulators. The two channel designs are: 1) a lightly-doped (1016 cm-3) channel and 2) a heavily-doped (1018 cm-3) channel. For each design, the silicon layer thicknesses (TSi) of 30, 60, and 90 nm are considered. The devices are biased under low-voltage conditions where the drain voltage is considerably less than the Si/SiO2 barrier height for electron injection. A comparative analysis of the Monte Carlo simulation results shows that an increase in TSi results in decreasing hot electron injection into the back oxide in both device designs. However, electron injection into the front oxide exhibits opposite trends of increasing injection for the heavily-doped channel design and decreasing injection for the lightly-doped channel design. These important trends are attributed to highly two-dimensional electric field and current density distributions. Simulations also show that the lightly-doped channel design is about three times more reliable for thick silicon layers. However, as the silicon layer is thinned to 30 nm, the heavily-doped channel design becomes about 10% more reliable instead  相似文献   

20.
Fully self-aligned bottom-gate thin-film transistors (TFTs) fabricated by using a back substrate exposure technique combined with a metal lift-off process are discussed. Ohmic contact to the sources and drains is accomplished by a 40-nm-thick layer of phosphorous-doped microcrystalline silicon. Devices with channel lengths ranging from 0.4 to 12 μm are processed with overlap dimensions between the gate and the source and the gate and the drain ranging from 0.0 to 1.0 μm. Analysis of the conductance data in the linear voltage regime reveals a parasitic drain-to-channel and source-to-channel resistance that is 14% of the channel resistance for a 10-μm device and 140% for a 1-μm device. Thus, increase in the device speed caused by reducing the channel length does not follow expected behavior. A similar situation exists in the nonlinear regime. The on-current of the devices starts to saturate below channel lengths of 2 μm. Current on/off ratios taken at Vd=5 V and VG=15 V and 0 V, respectively, are approximately 1×106 for the 1- and 12-μm-long devices. The on/off ratio is reduced to 1×105 for the 0.4-μm device  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号