首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
PPESK/PPS共混物流变性能的研究   总被引:3,自引:1,他引:2  
张军  刘彦军 《中国塑料》1998,12(6):54-57
以溶液共混-共沉淀的方式制备了含二氮杂萘联苯结构的聚醚砜酮/聚苯硫醚共混物,用毛细管流变仪考究了共混物的流变行为,讨论了剪切速率,温度和组成对体系流变性能的影响。结果表明,共混体系属于假塑性流体,少量聚苯硫醚的加入,可以明显降低体系的表观粘度,提高PPESK的加工性能。  相似文献   

2.
PPEKK/PPS共混物流变性能的研究   总被引:3,自引:1,他引:2  
采用溶液共沉降的方式制备了不同比例的含二氧杂萘酮结构聚醚酮酮(PPEKK)和聚苯硫醚(PPS)共混物。用毛细管流变仪测定了PPEKK/PPS共混莪的流变性能。结果发现在所研究的温度和剪切速率范围内,PPEKK/PPS共混物熔体为假塑性流体,其熔体表现粘度随PPS含量的增加,温度的升高,剪切速率的增大而下降,熔融活化能随剪切速率的增大而降低。对挤出样条的胀大比率、外观形貌研究表明,PPS的加入不仅有利于改善PPEKK的熔融加工性,还能改善成品尺寸稳定性和外观。  相似文献   

3.
PPESK/PS共混物流变性能的研究   总被引:3,自引:0,他引:3  
以溶液共沉淀的方法制备了含二氮杂萘联本结构的聚芳醚砜酮(PPESK)。聚苯乙烯(PS)共混物,用毛细管流变仪测定了共混物的流为性能。结果表明,在本实验条件下,PPESK/PS共混物熔体属假塑性非牛顿汉体,其熔体粘度随PS含量的增加、温度的升高、剪切速率的增大而下降。PS的加入有利于改善PPESK的熔融加工流动性。  相似文献   

4.
注塑级PPES/PPS共混合金热性能及结晶性能的研究   总被引:2,自引:0,他引:2  
通过熔融挤出、注塑成型的方法制备了配比不同的含二氮杂萘酮结构的聚芳醚砜(PPES)和聚苯硫醚(PPS)的共混物,对材料的热性能及结晶性能进行了研究。热失重研究表明,在所组成范围内PPS的加入并未降低共混物的热性能,但使共混物的热变形温度有所降低;PPES的加入使PPS的结晶受到阻碍,当PPES质量分数达80%时,PPS产生了晶格缺陷,从而不能形成完善的球晶,退火过程有利于提高共混物的热变形温度,使PPS形成更完善的球晶。  相似文献   

5.
用热塑性酚酞型聚芳醚酮树脂(PEK-C)与环氧树脂(EP)熔融共混,并以4,4′-二氨基二苯甲烷(DDM)为固化剂制备新型改性环氧树脂。用SEM观察固化物的微观相结构,用DMA、TG-DTG测试固化物的热性能及2相的相容性。结果表明,PEK-C质量分数小于10%时可以分子或纳米尺度(<100nm)均匀分散于环氧树脂基体中;PEK-C的含量增大,相分离现象明显,固化物的Tg升高,但在300℃以上的高温热稳定性能下降。  相似文献   

6.
尼龙6/环氧树脂共混物流变性能的研究   总被引:1,自引:0,他引:1  
用毛细管流变仪研究了尼龙6/环氧树脂共混物的流变性能。结果表明,在实验范围内共混物熔体为假塑性流体;随着环氧树脂用量的增加,表观粘度(ηa)增大,非牛顿指数(n)减小,熔体稠度(K)增大,粘流活化能降低。  相似文献   

7.
采用高级扩展旋转流变仪研究了聚碳酸酯/高支化聚苯乙烯(PC/HBPS)共混物的流变特性.结果表明:此共混物属于假塑性流体;随着剪切速率的增加,表观黏度下降,但下降趋势较缓慢;随着温度的增加,表观黏度下降,但下降趋势很快;共混物的粘流活化能有的比纯PC的高,有的比纯PC的低.  相似文献   

8.
聚苯硫醚共混合金的研究进展   总被引:2,自引:2,他引:2  
综述近年来聚苯硫醚(PPS)共混合金的研究进展,分别从形态结构(PPS/结晶性共混体系、PPS/非晶性共混体系)和性能(PPS/通用工程塑料共混体系、PPS/特种工程塑料共混体系)两个角度对PPS共混合金进行了较为详尽的总结,并展望了PPS共混合金的发展趋势。  相似文献   

9.
通过熔融共混制备了聚四氟乙烯质量分数低于30%的注塑级含二氮杂萘联苯结构聚醚酮/聚四氟乙烯(PPEK/PTFE)共混物,并对其摩擦性能、力学性能、热性能和密度进行了研究。PTFE的加入,使得共混物的摩擦性能比纯PPEK得到大幅度的改善,且随着PTFE含量的增加,共混物的摩擦性能逐步提高;共混物的力学性能则随PTFE含量的增加有所降低,但依然处于较高的水平;不同配比共混物的耐热性能则与纯PPEK相当,热变形温度大约为244℃;共混物的密度随PTFE含量的增加而呈线性增大趋势。  相似文献   

10.
以超临界CO2为物理发泡剂通过固态间歇发泡法制备了不同共混比例的聚苯硫醚/聚醚醚酮(PPS/PEEK)微孔材料。采用差示扫描量热法探讨了PPS/PEEK共混物的热性能,通过扫描电子显微镜观察分析了共混组成和饱和压力对微孔材料泡孔结构与分布的影响规律,并对微孔材料的冲击强度、介电常数和动态力学性能进行了研究。结果表明,共混使PPS相和PEEK相的结晶度增大,共混物中的气体饱和浓度随着PEEK组分含量的增加而增大。与纯PPS和PEEK相比,共混物中形成致密的多级泡孔结构。饱和压力越大则微孔材料的泡孔密度越大,且泡孔尺寸越小。微孔发泡使PPS/PEEK共混物的冲击强度增大,介电常数和储能模量降低。  相似文献   

11.
以溶液共沉淀的方法制备了含二氮杂萘联苯结构的聚醚砜酮(PPESK)/ABS共混物,用毛细管流变仪测定了共混物的流变性能。在实验条件下,PPESK/ABS共混物熔体属假塑性非牛顿流体,其熔体粘度随ABS含量的增加,温度的升高,剪切速率的增大而下降,ABS的加入有利于改善PPESK的加工流动性及制品外观。  相似文献   

12.
高粘度PET/PPS共混物的力学及流变性能研究   总被引:1,自引:0,他引:1  
通过在高粘度聚酯(PET)中加入聚苯硫醚(PPS),经熔融共混挤出制备PET/PPS共混物,研究了PPS对PET力学性能和流变性能的影响。结果表明,适量PPS可提高PET的拉伸强度和弯曲强度,而缺口冲击强度略有下降;共混物的流变行为符合假塑性流体的流动规律,随着PPS含量的增加,共混物的非牛顿指数先增大后减小;共混物的粘流活化能随着PPS含量的增加而降低。当PPS质量分数为5%时,共混物的综合性能最佳,且具有良好的成型加工性能。  相似文献   

13.
HDPE及其共混物流变性能的研究   总被引:4,自引:1,他引:4  
对 HDPE及 HDPE与 PEW、EVA共混物 ,HDPE与 HDPE(GC72 6 0 )共混物的流变性能进行了研究。测试了 HDPE及共混物的熔融指数、流动曲线、非牛顿指数、结构粘度指数及粘流活化能。结果表明 ,共混物的流动性能有很大提高 ,改善了加工性能。  相似文献   

14.
聚砜低聚物改性PPES流变性能的研究   总被引:1,自引:0,他引:1  
通过熔融挤出制备了不同比例的二氮杂萘联苯聚醚砜(PPES)和聚砜低聚物(O-PSU)的共混物,并用毛细管流变仪对该共混物的流变性能进行了研究。结果表明,共混物熔体在所测定的温度和剪切速率范围内呈现出典型的假塑性流体特性;共混体系的表观粘度随O-PSU用量的增加、温度的升高和剪切速率的增加而降低;O-PSU的加入明显地改善了PPES的熔融加工性能。  相似文献   

15.
研究了两种不同粘度热致液晶聚合物(TLCP)与两种熔体流动速率(MFR)相差比较大的聚苯硫醚(PPS)复合体系的流变特性。研究发现,在一定温度下复合体系的流变性与所添加的液晶聚合物的种类以及添加量等因素有关,呈现出较复杂的流变行为。  相似文献   

16.
借助DSC研究PPS/PEEK共混物熔融时间,PEEK粒径及PPS组分对共混物中PEEK结晶熔融行为的影响,结果表明,PEEK粒径由500~1000μm减小至200~500μm时,PEEK与PPS相互作用增大,PEEK的结晶峰由单峰分裂为双峰,其高温结晶峰向高温移动,峰强随熔融时间延长而减弱,低温结晶峰向低温移动,峰强随熔融时间延长而增大,熔融时间延长时,退火后PEEK的低温熔融峰强增大,而高温熔  相似文献   

17.
研究了MPPO/PA66组成、相容剂用量、加工温度等因素对MPPO/PA66合金体系流变性能的影响。结果表明相容剂用量的增加、加工温度的升高等都能降低体系的粘度,改善其加工流动性。  相似文献   

18.
PVC/ABS共混体系流变性能的研究   总被引:1,自引:0,他引:1  
用毛细管流变仪对PvC/ABS共混体系的流变性能进行了研究。结果表明,该体系的流动符合假塑性流体的流动规律。当ABS含量为o一50%时,共混体系的表现粘度随ABS的含量的增加而降低;当ABS的含量大于50%时,共混体系的表现粘度变化不大。同时ABS的种类和PVC相对分子质量的大小也影响共混物的表观粘度。  相似文献   

19.
HIPS/UHMWPE/UFPP共混体系流动性能的研究   总被引:3,自引:0,他引:3  
考察了UHMWPE、UFPP含量对HIPS/UHMWPE/UFPP共混体系流动性能的影响,给出了组分含量、温度、剪切力与体系熔体指数之间的定量关系。  相似文献   

20.
含二氮杂萘结构聚醚砜酮酮的流变行为研究   总被引:4,自引:0,他引:4  
合成了一种含二氮杂萘结构聚醚砜酮酮,采用万能电子试验机研究了其流变性能,并对其加工行为进行了分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号