首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Poly(vinylidene fluoride) (PVDF) nanofibrous mats containing silver nanoparticles were prepared by electrospinning. The diameter of the nanofibers ranged between 100 and 300 nm, as revealed by scanning electron microscopy. The silver nanoparticles were dispersed, but some aggregation was observed with transmission electron microscopy. The content of silver nanoparticles incorporated into the PVDF nanofibrous mats was determined by inductively coupled plasma and X‐ray photoelectron spectroscopy. The antibacterial activities of the samples were evaluated with the colony‐counting method against Staphylococcus aureus (Gram‐positive) and Klebsiella pneumoniae (Gram‐negative) bacteria. The results indicate that the PVDF nanofibrous mats containing silver nanoparticles showed good antibacterial activity compared to the PVDF nanofiber control. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Highly porous poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF–HFP)‐based polymer membranes filled with fumed silica (SiO2) were prepared by a phase‐inversion technique, and films were also cast by a conventional casting method for comparison. N‐Methyl‐2‐pyrrolidone as a solvent was used to dissolve the polymer and to make the slurry with SiO2. Phase inversion occurred just after the impregnation of the applied slurry on a glass plate into flowing water as a nonsolvent, and then a highly porous structure developed by mutual diffusion between the solvent and nonsolvent components. The PVdF–HFP/SiO2 cast films and phase‐inversion membranes were then characterized by an examination of the morphology, thermal and crystalline properties, absorption ability of an electrolyte solution, ionic conductivity, electrochemical stability, and interfacial resistance with a lithium electrode. LiPF6 (1M) dissolved in a liquid mixture of ethylene carbonate and dimethyl carbonate (1:1 w/w) was used as the electrolyte solution. Through these characterizations, the phase‐inversion polymer electrolytes were proved to be superior to the cast‐film electrolytes for application to rechargeable lithium batteries. In particular, phase‐inversion PVdF–HFP/SiO2 (30–40 wt %) electrolytes could be recommended to have optimum properties for the application. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 140–148, 2006  相似文献   

3.
A method was developed for introducing metallic nanoparticles (nanoAg and nanoAu) into cosmetic compositions (shampoos and soaps). Embedding of silver or gold nanoparticles into the composition imparts antimicrobial activity. Physicochemical properties of the prepared formulations were characterized. To confirm the presence of metallic nanoparticles, a UV–vis study was conducted. The size of embedded nanoparticles was determined using dynamic light scattering. The micrometric structure of the obtained products was characterized using scanning electron microscopy with energy‐dispersive X‐ray spectroscopy (SEM‐EDS) microscopy. A technique was developed for the assessment of nanoparticle release from cosmetic products as well as for the analysis of the penetration of nanoparticles through a model dermal membrane. The evaluation of accumulation of nanoparticles in model human body fluids was a crucial step in this study. The antimicrobial properties of final cosmetic formulations were studied using Aspergillus niger. The results confirmed that stable cosmetic formulations with embedded metallic nanoparticles were obtained. It was determined that nanoparticles are able to penetrate through a model dermal membrane. However, after 20 min of washing, the migration of nanoparticles was not confirmed. The obtained products exhibited biocidal activity against A. niger.  相似文献   

4.
Fluoroalkyl end‐capped 2‐methacryloxyethanesulfonic acid homo‐oligomer [RF–(MES)n–RF] and 2‐methacryloxyethanesulfonic acid–N,N‐dimethylacrylamide co‐oligomers [RF–(MES)x–(DMAA)y–RF] reacted with tetraethoxysilane (TEOS) under acidic conditions to afford RF–(MES)n–RF homo‐oligomer–SiO2 polymer hybrid and RF–(MES)x–(DMAA)y–RF co‐oligomer–SiO2 polymer hybrid, respectively. Thermogravimetric–mass spectra showed that the thermal stability of RF–(MES)n–RF homo‐oligomer–SiO2 polymer hybrid was superior to that of traditionally well‐known perfluorinated ion exchange polymers such as Nafion 112 (TR). The sol solutions of the fluorinated co‐oligomer–SiO2 polymer hybrid were applied to the surface modification of glass to exhibit not only a strong oleophobicity imparted by fluorine but also a good hydrophilicity on the glass surface. On the other hand, RF–(MES)x–(DMAA)y–RF co‐oligomer reacted with TEOS in the presence of a variety of silica nanoparticles (mean diameters: 11–95 nm) under alkaline conditions to afford fluoroalkyl end‐capped oligomers–silica nanoparticles (mean diameters: 32–173 nm) with a good dispersibility and stability in methanol. Similarly, a variety of fluorinated oligomers containing sulfo groups–silica nanoparticles were prepared by the homo‐ and co‐oligomerizations of fluoroalkanoyl peroxides with 2‐methacryloxyethane sulfonic acid (MES) and comonomers such as N,N‐dimethylacrylamide (DMAA) and acryloylmorpholine (ACMO) in the presence of silica nanoparticles. Interestingly, these isolated fluorinated particle powders were found to afford nanometer size‐controlled colloidal particles with a good redispersibility and stability in aqueous and organic media such as methanol. These fluorinated nanoparticles containing sulfo groups were also applied to an excellent heterogeneous catalyst for Bronsted acid‐catalyzed transformations. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 110–117, 2007  相似文献   

5.
The purpose of this study was to determine major factors impacting the size of simvastatin (SIM)‐loaded poly(d , l ‐lactic‐co‐glycolide) (PLGA) nanoparticles (NPs) that was prepared using electrospraying. Three variables including concentration of polymer and salt as well as solvent flow rate were used as input variables. Size of NPs was considered as output variable. For the first time, our findings using a systematic and experimental approach, showed the importance of salt concentration as the dominant factor determining the size with a sharp and reverse effect. Optimum formulation (i.e., flow rate 0.08 mL h?1, polymer concentration 0.7 w/v %, and salt concentration 0.8 mM) was then evaluated for aqueous solubility, encapsulation efficiency, particle size, in vitro drug release pattern and cytotoxicity. A very appreciable encapsulation efficiency (90.3%) as well as sustained release profile, considerable enhancement in aqueous solubility (~5.8 fold) and high IC50 (>600 µM of SIM‐loaded PLGA NPs) indicated PLGA as a promising nanocarrier for SIM. The optimum formulation had particle size, zeta potential value, polydispersity index (PDI) and drug loading of 166 nm, +3 mV, 0.62 and 9%, respectively. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43602.  相似文献   

6.
The binary lanthanide catalyst for 1,3‐butadiene was invented for 40 years ago. However, it has not been employed in commercial application due to its poor solubility and low activity. Nanosized neodymium chloride (NdCl3) was prepared in tetrahydrofuran (THF) medium through dissolution, chelation, and colloidal formation steps. Anhydrous NdCl3 was dissolved in THF, and ca. 1.5 THF molecules were coordinated. In the colloidal formation step, THF was slowly replaced with the addition of cyclohexane, and pale blue nuclei, nanosize below 200 nm, were formed. The structural studies for NdCl3 · xTHF using X‐ray powder diffraction (XRD) and scanning electron microscope (SEM) indicate that high ordered crystallinity is decreased with reduced particle size from trigonal prismatic to porous sphere structure. Nano NdCl3, obtained as colloidal state in cyclohexane, was activated with Al(iBu)3 and Al(iBu)2H at room temperature and employed for 1,3‐butadiene solution polymerization. The nanosized Nd catalysts showed high activity (1.0 ~ 1.3 × 105 g/Nd mol · h), which is comparable to that of the ternary neodymium catalyst Nd(neodecanoate)3/AlEt2Cl/Al(iBu)3. The microstructures of polybutadiene, cis, trans, and vinyl, are about 96.0, 3.5, and 0.5%, respectively. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1279–1283, 2005  相似文献   

7.
In this research, we contributed to the search for potential hydrogel–silver dressings by generating hydrogel–silver nanoparticles (AgNPs) composites prepared by the dipping of the crosslinked hydrogel poly(N‐vinylpyrrolidone‐co‐2‐acrylamido‐2‐methylpropanesulfonate sodium) (1:1) and poly(acrylamide‐co‐2‐acrylamido‐2‐methylpropanesulfonate sodium) (1:1) into an aqueous suspension of citrate‐stabilized AgNPs. The composites obtained were evaluated by an antibacterial activity assay on Staphylococcus aureus and Escherichia coli and subjected to an in vitro cytotoxicity assay for human fibroblasts. The composite formed from the hydrogel poly(N‐vinylpyrrolidone‐co‐2‐acrylamido‐2‐methylpropanesulfonate sodium) with 3 mol % N,N‐methylene bisacrylamide showed the highest antibacterial activity and the least cytotoxicity among the composites tested; this makes it an excellent alternative as a potential dressing for the treatment of deep and exudative wounds. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39644.  相似文献   

8.
Poly(m-phenylenediamine-co-aniline) P(mPD-co-ANI) and Mn-, Ni-, and Cu-doped poly(m-phenylenediamine-co-aniline) (M-P(mPD-co-ANI)) have been synthesized and characterized. Cu-P(mPD-co-ANI) has been used as a molecular precursor of CuO nanoparticles. The spectral, optical, refractive index, solubility, and thermal properties of the synthesized polymers have been measured and discussed. The optical bandgap (Eg) measurements indicated that Ni(P(mPD-co-ANI)) has wider optical band than the pure (P(mPD-co-ANI)). Calcination of Cu-P(mPD-co-ANI) at 600°C produced (CuO) nanoparticles. The obtained nanoparticles have been characterized by XRD and TEM. The average size of CuO nanoparticles was found to be 42?nm. The refractive index measurements indicate slight change in the refractive index values of the polymer solution than that of pure solvent. The solubility of the synthesized polymers in ethanol, dimethyl formamide (DMF)–aqueous mixed solvents was found to increase as the mole fractions of both ethanol and DMF increase. The UV spectra of the synthesized polymers in ethanol, DMF–aqueous mixed solvents indicate blueshift and hyperchromic effect.  相似文献   

9.
A simple and effective solvent swelling method was developed for the preparation of poly(methyl methacrylate) (PMMA)/europium (Eu) complex hybrid nanospheres. Transmission electron microscopy and dynamic light scattering results indicate that the as‐prepared PMMA–Eu nanoparticles had a spherical morphology, with a narrow particle size distribution ranging from 100–200 nm. The PMMA–Eu nanospheres exhibited strong red emissions with a maximum peak at 612 nm under UV excitation, and the luminescence lifetime of the Eu complex was enhanced after it was swollen into PMMA nanospheres. Furthermore, the luminescence intensity of the PMMA–Eu nanospheres was very stable in various severe media, including aqueous solutions with various pHs, 1 mM Ca2+, 1 mM Fe2+, 1 mM Cu2+, 0.1M phosphate‐buffered saline solution, 1 mM citric acid solution, 1 mM lysine, and 1 mM glutamic acid. After the nanospheres were incubated at various temperatures for 1 h, the luminescence properties remained stable when the temperature was less than 40°C yet decreased slightly between 40 and 60°C and decreased rapidly at higher temperatures. These luminescent nanospheres were successfully applied in the luminescence‐sensing assay of hydrogen peroxide and exhibited a high sensitivity and broad linear concentration range. Because of their unique luminescence properties, the as‐synthesized PMMA–Eu nanospheres are expected to have great potential for use as luminescent labels or probes for long‐time imaging and analysis in which severe media situations are present. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
A series of copolymeric nanoparticles of the partially water‐soluble monomer ethyl methacrylate and the water‐soluble monomer 2‐hydroxyl ethyl methacrylate were synthesized from emulsions containing sodium dodecyl sulfate via free‐radical polymerization. Lamotrigine, as a model drug, was loaded in nanoparticles during in situ polymerization. A stable and transparent poly(ethyl methacrylate‐co‐hydroxyl ethyl methacrylate) nanolatex was produced for all compositions and characterized for particle size by dynamic light scattering and transmission electron microscopy. Particles were found to be smaller than 50 nm in size. Structural characterization of copolymers was done by infrared spectrometry, gel permeation chromatography, and NMR spectroscopy. Drug encapsulation efficiency was determined by ultraviolet (UV)–visible spectrometry and was found to be 26–62% for copolymers with different compositions. UV data suggest molecular‐level dispersion of the drug in the nanoparticles. In vitro drug‐release studies showed the controlled release of lamotrigine. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Atom transfer radical polymerization of 1‐allylindole‐3‐carbaldehyde (AIC) was studied by employing 2‐bromoisobutyryl bromide as initiator in toluene. It led to controlled radical polymerization of AIC, with an increase of molecular weight along with the conversion of the monomer, and a relatively narrow molar mass distribution was obtained, as determined by gel permeation chromatography. The living nature of poly(1‐allylindole‐3‐carbaldehyde) (PAIC) was confirmed by the chain extension polymerization whereas 1H NMR analysis showed that the major population of PAIC retained the chain‐end functional group. PAIC and its silver nanocomposite were found to be biologically active against some tested bacterial pathogens. Minimum inhibitory concentration tests revealed that PAIC exhibited antibacterial activity against Staphylococcus aureus, Proteus mirabilis and Klebsiella pneumonae whereas PAIC/Ag nanocomposite showed antibacterial activity against Enterococcus faecalis and K. pneumonae. © 2012 Society of Chemical Industry  相似文献   

12.
Summary: Highly porous poly[(vinylidene fluoride)‐co‐hexafluoropropylene] (PVdF‐HFP)/TiO2 membranes were prepared by a phase inversion technique, using dimethyl acetamide (DMAc) as a solvent and water as a non‐solvent. Their physical and electrochemical properties were then characterized in terms of thermal and crystalline behavior, as well as ionic conductivity after absorbing an electrolyte solution of 1 M LiPF6 dissolved in an equal weight mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC). For comparison, cast films and their electrolytes were also made by a conventional casting method without using the water non‐solvent. In contrast to the case of using N‐methyl‐2‐pyrrolidone (NMP) as a solvent, the PVdF‐HFP/TiO2 composite electrolytes, obtained using DMAc, exhibited superior properties of electrochemical stability and interfacial resistance with a lithium electrode but had lower ionic conductivities. It was also demonstrated that the phase inversion membrane was more effective than the cast film as the polymer electrolyte of a lithium rechargeable battery. As a result, a phase inversion membrane with 50 wt.‐% TiO2 was demonstrated to be the optimal choice for application in a lithium rechargeable battery.

Time evolutions of interfacial resistance between polymer electrolyte and lithium electrodes.  相似文献   


13.
The objective of the present study performed was to develop and characterize of silver (Ag)-doped titanium dioxide (TiO2) naoparticles (NPs) encapsulated in chitosan–polyvinyl alcohol (PVA) film for synergistic antimicrobial activity. The acidic solution of chitosan with PVA was used for the reduction of silver ions into silver NPs using their functional groups such as hydroxyl, carboxyl, and amino groups. The chitosan–PVA silver nanoparticle films showed significant antimicrobial and antifungal activity against Staphylococcus aureus, Candida albicans, and Pseudomonas aeruginosa. Therefore, the present study is an alternative for conventional treatment as antimicrobial film showed synergistic, noninvasive, and economic effects.  相似文献   

14.
With an aim to develop injectable hydrogel with improved solution stability and enhanced bone repair function, thermogelling poly(ε‐caprolactone‐cop‐dioxanone)‐poly(ethylene glycol)‐poly(ε‐caprolactone–cop‐dioxanone) (PECP)/bioactive inorganic particle nanocomposites were successfully prepared by blending the triblock copolymer (PECP) with nano‐hydroxyapatite (n‐HA) or nano‐calcium carbonate (n‐CaCO3). The hydrogel nanocomposites underwent clear sol–gel transitions with increasing temperature from 0 to 50°C. The obtained hydrogel nanocomposites were investigated by 1H NMR, FT‐IR, TEM, and DSC. It was found that the incorporation of inorganic nanoparticles into PECP matrix would lead to the critical gelation temperature (CGT) shifting to lower values compared with the pure PECP hydrogel. The CGT of the hydrogel nanocomposites could be effectively controlled by adjusting PECP concentration or the content of inorganic nanoparticles. The SEM results showed that the interconnected porous structures of hydrogel nanocomposites were potentially useful as injectable scaffolds. In addition, due to the relatively low crystallinity of PECP triblock copolymer, the aqueous solutions of the nanocomposites could be stored at low temperature (5°C) without crystallization for several days, which would facilitate the practical applications. The PECP/bioactive inorganic particle hydrogel nanocomposites are expected to be promising injectable tissue engineering materials for bone repair applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
Polymer nanoparticles (nps) have gained growing interest as carriers for anticancer drugs as they can target tumour tissues by both passive and active pathways. While the passive targeting mechanisms mainly rely on the small size of the carriers, active targeting requires surface modifications of the polymer core in order to introduce specific functionalities to actively recognize cancer cells. The present work proposes an innovative method for the preparation of surface‐functionalized nps based on the use of biodegradable polyester‐ and polyester/ether‐urethanes (PURs) embedding amino functionalities. Two polyurethanes were prepared, one based on just poly(?‐caprolactone) diol (PCL‐PUR) and the other based on both PCL diol and poly(ethylene glycol) (PEG) (70/30 ratio, PCL‐PEG‐PUR). Nanoparticles of small size ranging between 150 and 200 nm and negative ζ potential (ranging from ?18 mV to ?27 mV) were obtained. Functional groups were exposed post nps preparation as confirmed by X‐ray photoelectron spectroscopy, ninhydrin assay and 1H NMR, which evidenced a 24% tert‐butyloxycarbonyl cleavage for PCL‐PUR‐NH2 nps and 29% for PCL‐PEG‐PUR‐NH2 nps. The monoclonal antibody Herceptin (HER), which targets HER‐2 receptors, was coupled through ethyl(dimethylaminopropyl) carbodiimide/N‐hydroxysuccinimide (EDC/NHS) mediated chemistry. The optimal HER:NH2 ratio was determined to be 1:16 for the PEG‐containing PUR and 1:8 for PCL‐PUR. HER‐nps maintained the intrinsic cytotoxicity of the antibody, as shown by the ca 50% decrease of HER‐2‐expressing HeLa cell viability. The results indicate that our protocol for surface functionalization of PUR nps, based on surface exposure of previously inserted functional groups followed by covalent coupling of biomolecules, is suitable for the preparation of nps for active recognition of target cells. © 2016 Society of Chemical Industry  相似文献   

16.
A silica‐sphere–poly(catechol hexamethylenediamine) (PCHA–SiO2) composite was prepared via the one‐step facile polymerization of catechol and hexamethylenediamine; this method uses a silica sphere as a hard template. The chemical structures and morphologies of this composite were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. The adsorption experiments indicated that the PCHA–SiO2 composite served as a very attractive adsorbent for Pb(II)‐, Cu(II)‐, and Cd(II)‐ion removal at lower concentrations and had very good selective adsorption abilities for Pb(II) and Cu(II) ions in a solution contaminated with these three ions at higher concentrations. These interesting results may have been due to the reversible H+ adsorption–desorption properties of the characteristic phenol amine structure of the PCHA–SiO2 composite. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45839.  相似文献   

17.
Methoxy poly(ethylene glycol)‐b‐poly(L ‐lactic acid) (MPELLA) was prepared by the melt polycondensation of methoxy poly(ethylene glycol) and L ‐lactic acid. The structure and properties of MPELLA were characterized by IR, 1H‐NMR, differential scanning calorimetry, and wide‐angle X‐ray diffraction. To estimate its feasibility as a vehicle for paclitaxel, MPELLA nanoparticles were prepared by a self‐emulsification/solvent evaporation method. The paclitaxel‐loaded nanoparticles (PMTs) showed a spherical morphology with an inner core and an outer shell. The size, size distribution, and loading capacity of PMTs were also measured. The release kinetics of paclitaxel from PMTs in vitro was studied. The results show that paclitaxel can be effectively incorporated into MPELLA nanoparticles, which provide a delivery system for paclitaxel and other hydrophobic or toxic compounds. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2116–2122, 2005  相似文献   

18.
《分离科学与技术》2012,47(17):2809-2816
ABSTRACT

This study was to demonstrate the possibility of using Miscanthus floridulus leaves to adsorb oils. The oil adsorption ability of Miscanthus leaves was approximately 3.59 ± 0.19 and 3.91 ± 0.15 (g oil/g leaves) for soybean oil and motor oil, respectively. The adsorption ability of Miscanthus leaves was directly visualized by scanning electron microscope (SEM) and transmission electron microscop (TEM) using gold nanoparticles that were adsorbed on the surface and edge of M. floridulus leaves. Changes in IR absorbance were used to exhibit specific interactions and the adsorption ability of M. floridulus leaves. The results showed M. floridulus leaves have hydrophobic structure on the leaf surface.  相似文献   

19.
The functionalized ionic liquid (2,3-dimethyl-1-[3-N,N-bis(2-pyridyl)-propylamido] imidazolium hexafluorophosphate, [BMMDPA][PF6]) stabilized and modified palladium nanoparticles were obtained by reducing palladium(II) complex with molecular hydrogen. The as-synthesized palladium nanoparticles have been characterized by different methods. It was demonstrated that the Pd nanoparticles were very efficient catalysts for the selective hydrogenation of the CC bonds of various functionalized alkenes under mild conditions in neat ionic liquid (1-n-butyl-2,3-dimethylimidazolium hexafluorophosphate, [BMMIM][PF6]). An efficient separation of the products from reaction mixture (ionic liquid phase) was realized and the catalyst’s nano-dispersion and high performance could be preserved.  相似文献   

20.
The article presents the incorporation of biocides [2‐substituted N‐alkylimidazoles and their silver(I) complexes] into electrospun nylon 6 nanofibers for application as antimicrobial materials. The electrospun nylon 6/biocides nanofiber composites were characterized by IR spectroscopy (ATR‐FTIR) and scanning electron microscopy (SEM‐EDX). The antimicrobial activity of the electrospun nylon 6/biocides nanofiber composites was evaluated against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis subsp. spizizenii using the disk diffusion method, the American Association for Textile Chemists and Colorists test method 100‐2004 and the dynamic shake flask method (American Society for Testing and Materials E2149‐10). The electrospun nylon 6 nanofibers incorporated with 2‐substituted N‐alkylimidazoles displayed moderate to excellent levels of growth reduction against S. aureus (73.2–99.8%). For the electrospun nylon 6 nanofibers incorporated with silver(I) complexes, the levels of growth reduction were >99.99%, for both E. coli and S. aureus, after the antimicrobial activity evaluation using the shake flask method. The study demonstrated that the electrospun nanofibers, fabricated using the incorporation strategy, have the potential to be used as attractive antimicrobial materials. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39783.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号