首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 578 毫秒
1.
许新军  封振山 《材料保护》2015,(2):44-46,50,8
为了降低WC增强镍基合涂层的制备成本,提高其表面性能,采用高频感应熔覆技术在热轧45钢表面制备Ni60-WC合金层,并对熔覆层进行电接触强化。采用光学显微镜、X射线衍射仪及显微硬度计分析了熔覆层电接触强化前后的形貌、相结构及显微硬度;采用滚动疲劳接触磨损试验研究了熔覆层电接触强化前后的耐磨性。结果表明:热轧态45钢感应熔覆层组织较为致密,但存在孔洞、夹生缺陷;熔覆层电接触强化后组织更加致密,孔洞减少,夹生层重新熔合,热影响区减小;熔覆层电接触强化前后的相结构相同,均由WC,W2C,Cr23C6,Cr7C3,Fe Ni,Ni3Fe等相组成;熔覆层电接触强化后的显微硬度和耐磨性较电接触强化前大幅提高,熔覆层电接触强化后抗疲劳磨损性能大幅提高且远高于淬火态45钢的。  相似文献   

2.
WC含量对真空熔覆镍基合金涂层组织及性能的影响   总被引:1,自引:0,他引:1  
为了强化45钢表面性能,在45钢表面于1 225℃下通过真空熔覆制备了WC颗粒增强的镍基合金涂层,利用SEM观察了熔覆层组织形貌,结合EDS分析了各元素扩散情况及WC含量对过渡层结合情况的影响,通过硬度测试和磨损试验,研究了不同WC含量对熔覆层性能的影响。结果表明:熔覆过程中元素互扩散使母材与熔覆层达到冶金结合,同时WC颗粒发生沉降;当WC含量低于20%时,WC颗粒偏聚在母材过渡层附近,且颗粒越大,越靠近母材侧;随着WC含量逐渐增加,颗粒之间相互支撑形成骨架可减少沉降,使分布逐渐趋于均匀,但当WC含量过多时,WC聚集形成熔池使熔覆层中气孔率提高;WC含量达到40%时,出现大量分布在WC颗粒之间或周围的空洞,同时,WC的加入可大大提高材料的耐磨性;当WC含量为30%时,平均磨损失重约为21.5 mg,仅为母材的15%左右。将WC颗粒增强的镍基合金熔覆于45钢表面,在保证母材基本性能的同时可显著提高45钢的表面硬度及耐磨性。加入30%WC既能保证涂层与母材良好的冶金结合,又能显著提高其表面耐磨性,具有一定的研究价值。  相似文献   

3.
等离子束熔覆铁基合金涂层的组织与性能研究   总被引:15,自引:1,他引:14  
利用等离子熔覆技术,在钢基体表面熔覆了一层铁基合金,获得了与基体呈冶金结合的、性能良好的涂层;采用金相显微镜对熔覆层的组织进行观察,发现熔覆层整体组织由柱状树枝晶向等轴晶转变,无气孔、夹杂,其中枝晶组织粗大,等轴晶组织细小;利用显微硬度计分析表明,熔覆层具有较高的硬度,并且由表面到基体呈梯度分布;磨损试验结果表明熔覆层的耐磨性是淬火45钢的2.56倍.  相似文献   

4.
谌俊  张黎 《材料保护》2012,45(12):20-21,29,2
为了探讨45钢上纳米WC/Ni60B激光熔覆层在磨损过程中出现的相变及析出位置,采用MM-200磨损试验机,将纳米碳化钨增强的Ni基激光熔覆层与硬质合金磨轮进行对磨,采用MX2600FE场发射扫描电镜对熔覆层表/截面组织、磨损后的表/截面组织以及磨屑进行观察分析。结果表明:熔覆层磨损表面和距离磨损区表面约10μm的亚表层析出纳米级颗粒,磨屑中也有类似的析出颗粒,析出颗粒的形貌为白色球状,粒径尺寸为数十至数百纳米。  相似文献   

5.
为提高1Cr12Ni2W1Mo1V不锈钢的耐水蚀性能,采用等离子堆焊方法在其表面制备司太立熔覆层。研究了涂层的显微组织和显微硬度分布,分析了涂层的抗微粒冲蚀性能和耐水蚀性能。结果表明:司太立熔覆层与基体材料冶金结合良好,熔覆层组织细小、分布均匀,基体为枝晶状Co-Cr固溶体,枝晶间较均匀地分布着黑色碳化物,主要为M7C3和少量WC颗粒;司太立熔覆层的平均显微硬度(382.38 HV4.9 N)约为基材平均硬度(195.29HV4.9 N)的1.96倍,最高硬度值达到了421.00 HV4.9 N;堆焊第2层的硬度明显高于第1层的;司太立熔覆层合金的抗微粒冲蚀性能优于基材,其水蚀速度比基材小,在基材1Cr12Ni2W1Mo1V上堆焊司太立合金能有效提高其耐水蚀性能。  相似文献   

6.
为了在保证良好力学性能的前提下提高45钢的表面质量,采用真空熔覆技术以不同熔覆温度在45钢表面制备WC增强镍基合金熔覆层。利用扫描电镜分析熔覆层组织形貌以及过渡层结合情况;通过硬度测试和磨损试验分析熔覆温度对熔覆层性能的影响。结果表明:随着熔覆温度的升高,熔覆试样过渡层逐渐增厚但整体变化不大,都大于30μm,满足冶金需求;熔覆温度过高时,WC分解严重,熔覆层耐磨性大大降低;熔覆温度为1 225℃时,得到的WC增强镍基合金效果良好,熔覆层洛氏硬度接近40 HRC,对母材强化作用明显,可显著提高其耐磨性。  相似文献   

7.
通过激光熔覆的方法在Cu-Cr-Zr三元铜合金表面制备Ni60添加不同含量WC颗粒的合金熔覆层。熔覆层的微观组织结构、化学成分、物相组成分别由SEM、EDS、XRD进行表征;显微硬度、耐磨性和耐蚀性也分别由硬度试验机、干滑动摩擦磨损试验机以及电化学工作站进行测试。结果显示,在合适的工艺参数下,可以得到冶金结合良好,没有缺陷,组织均匀且致密的激光熔覆层。含WC的熔覆层组织中,主要含有Cr7C3、Cr23C6、CrB、NiSi3、γ(Ni,Fe)、W2C、Cr2W4C、WC等相。熔覆层平均硬度可达基体的7倍以上,并且随WC含量增加逐渐增加。熔覆层耐磨性随WC含量增加也逐渐提高,摩擦系数和磨损量均下降明显。熔覆层的耐蚀性随WC含量的增加先提高,后降低,其中WC含量为15%时熔覆层的耐蚀性最好。  相似文献   

8.
在低碳钢表面添加质量分数为20%的WC和6%的石墨颗粒,采用真空熔覆方法制备出具有类织构切面形貌的镍基合金(Ni0)复合涂层,研究了复合涂层的显微组织形貌及形成机理、相组成以及干摩擦条件下的摩擦磨损性能,并与镍基合金(Ni0)、碳化钨增强镍基合金(Ni0+20%WC)、石墨改性镍基合金(Ni0+6%石墨)三种涂层进行了比较。结果表明,WC呈不连续的三维网状分布在镍基合金基体中,镍基合金主要由基体相γ-Ni,铬化物硬质相CrB、Cr7C3、Cr23C6和共晶相Ni3B、Ni3Si构成;WC和石墨的单独加入都能提高复合涂层的摩擦磨损性能,类织构组织复合熔覆层的摩擦磨损性能优于相同组成的硬质颗粒单独弥散分布的复合熔覆层;在WC和镍基合金基体组成的类织构形貌结构和石墨润滑相的共同影响下,复合涂层比单一镍基合金涂层的耐磨性提高大约9.6倍。  相似文献   

9.
40Cr钢表面涂敷层的磨损和腐蚀磨损研究   总被引:2,自引:0,他引:2  
用掺有 10 %(w)CeO2 粉末的及未掺的KF 2 0 1铁基高强度耐磨合金粉末 ,对淬火态 40Cr钢材表面进行喷涂、喷熔和激光涂敷等表面处理 ,考察了用这 3种工艺制作的 6种涂层的显微组织、硬度分布、无润滑磨损和腐蚀磨损。结果表明 ,涂层的磨损抗力和腐蚀磨损抗力都比 40Cr钢基底的大为提高。激光涂敷层的磨损抗力达到淬火态 40Cr钢基底的 5倍以上 ,在 5 %盐水 +石英砂内进行腐蚀磨损试验 ,激光涂敷层的腐蚀磨损抗力达到 40Cr钢基底的 2倍以上。在KF 2 0 1粉末中掺入CeO2 ,Ce能使涂层组织细化 ,涂层磨损抗力与腐蚀磨损抗力得到进一步的提高。  相似文献   

10.
基底材料对NiCrBSiC合金激光熔覆层组织和磨损性能的影响   总被引:3,自引:0,他引:3  
采用横流CO2激光在45钢和TC4钛合金表面熔覆NiCrBSiC合金涂层,利用XRD,SEM和TEM分析了激光熔覆层的微观组织,测试了激光熔覆层的硬度和摩擦磨损性能.结果表明,NiCrBSiC合金激光熔覆层的组织和性能与基底材料的种类密切相关.45钢表面激光熔覆层由γ-Ni,Ni3B,Cr7C3和CrB相组成,硬度在HV800~900之间;TC4合金表面激光熔覆层由γ-Ni,Ni3B,TiC和TiB2相组成,硬度在HV900~1100之间.TC4合金表面NiCrBSiC激光熔覆层的摩擦系数和质量磨损率分别低于45钢表面NiCrBSiC激光熔覆层的摩擦系数和质量磨损率.  相似文献   

11.
Ni60A+20WC于水刀喷嘴耐磨层的应用工艺   总被引:1,自引:0,他引:1  
采用高频感应熔覆技术以提高高压水刀喷嘴的耐磨性能,本实验选用304不锈钢板作为基体材料,Ni60A+20%WC合金粉末作为熔覆层材料;分别采用高频感应加热设备、电火花成型机和小孔机对试件进行加热、熔覆并加工到规定尺寸.采用扫描电子显微镜观察试件的微观组织,发现涂层和基体之间产生了扩散层;采用X射线衍射仪分析涂层相结构,涂层中存在的强化相有WC、Fe_3Ni_2、W2C、Cr_3C_2、Cr_2Ni_3等;摩擦学性能测试实验表明涂层材料大大提高了水刀喷嘴的耐磨性;显微硬度实验表明WC极大地提高了涂层的硬度,其平均值约为1 000 HV0.1,基体约为190 HV0.1.在水刀喷嘴内孔成功制备了WC增强Ni基熔覆层,该熔覆层光滑平整,表面无明显缺陷,与基体实现冶金结合,性能优异.  相似文献   

12.
为了改善高速钢表面的摩擦磨损性能,应用激光熔覆技术在W6Mo5Cr4V2高速钢表面制备出WC/Co熔覆道。采用三维数码显微镜观察熔覆试件的金相组织并借助显微硬度计测试其显微硬度。采用销盘式摩擦磨损试验机分别对高速钢和WC/Co熔覆试件进行了摩擦磨损试验,并采用三维数码显微镜观察磨损形貌。结果表明:与高速钢基材相比,WC/Co熔覆道硬度提高,熔覆试件的摩擦系数和磨损量降低;WC/Co熔覆道的磨损机制以磨粒磨损为主,熔覆道间隔以磨粒磨损和黏着磨损为主;熔覆道的硬度提高、减摩效果、散热作用以及试件表面熔覆道与间隔面的软硬交替,有助于提高WC/Co熔覆试件的摩擦磨损性能。  相似文献   

13.
AISI 1045 steel surface was alloyed with pre-placed ferrotitanium and graphite powders by using a 5-kW CO2 laser. In situ TiC particles reinforced Fe-based surface composite coating was fabricated. The microstructure and wear properties were investigated by means of scanning electron microscopy, transmission electron microscopy, and X-ray diffraction, as well as dry sliding wear test. The results showed that TiC carbides with cubic or flower-like dendritic form were synthesized via in situ reaction between ferrotitanium and graphite in the molten pool during laser cladding process. The TiC carbides were distributed uniformly in the composite coating. The TiC/matrix interface was found to be free from cracks and deleterious phase. The coatings reinforced by TiC particles revealed higher wear resistance than that of the substrate.  相似文献   

14.
采用真空熔覆技术在45钢表面制备Ni +WC复合熔覆层并进行阶段性取样,研究镍基复合涂层的形成机制。结果表明:在45钢表面生成与基体冶金熔合、WC硬质颗粒分布均匀的Ni基复合熔覆层。整个熔覆层由4 mm厚的复合层、1 mm厚的过渡层、20 μm厚的扩散熔合区以及250 μm厚的扩散影响区组成。复合层区由WC和分解形成的富W复相碳化物包围在Ni颗粒周围组成;复合熔覆层的主要组成相有γ-Ni固溶体、Cr7C3、Ni2.9Cr0.7Fe0.36、Cr23C6、Ni3Fe、Ni3Si、Ni3B、W2C以及C等;真空熔覆过程包括:镍基合金颗粒达到熔点(900℃)前升温阶段颗粒间微烧结颈的形成、升温达到熔点(1020℃)开始的镍基合金颗粒熔融以及保温阶段(1060℃)的熔合扩散与WC颗粒微区位置的调整。  相似文献   

15.
WC颗粒在堆焊过程中溶解机理的研究   总被引:8,自引:0,他引:8  
索进平  冯涤  骆合力  崔崑 《功能材料》2003,34(2):221-223
研究了WC/Ni3Al表面强化功能复合材料的制备及WC颗粒的溶解机理。在堆焊过程中,WC/Ni3Al复合材料焊条中的WC直接溶解进入基体中,然后析出W2C,而非WC分解成W2C然后溶解。当焊条中含5%(质量分数)WC时,部分Al被氧化,WC溶解,析出W2C,形成碳化物包裹氧化物的球形复合析出物,基体转化成Nb(AlTi)C,形成碳化物包裹氧化物/金属间化合物的复合材料。随着WC含量增加,Al氧化减少。当焊条中的WC含量达到30%时,焊层中的Al不被氧化,表面层中的大部分WC颗粒溶解,析出针状W2C,形成碳化物/金属间化合物复合材料,耐磨性可达45钢的3倍以上。  相似文献   

16.
采用放电等离子烧结技术制备了WC质量分数为40%的WC/Fe复合材料,研究了不同烧结温度条件下WC/Fe复合材料的致密度、组织、硬度及干摩擦磨损性能。利用SEM和XRD分析了不同烧结温度条件下存在的物相;采用销-盘摩擦磨损试验机(盘试样选用~80μm的Al2O3砂纸,滑动距离约为950m)测量了马氏体耐磨钢和WC/Fe复合材料在不同载荷下相对磨损率;用SEM观察磨损形貌,确定WC/Fe复合材料的磨损机制。结果表明:烧结温度为1080℃时,WC/Fe复合材料实现完全致密,WC陶瓷颗粒均匀分布在基体中并与基体界面结合良好;随着WC/Fe复合材料完全致密化,其硬度及耐磨性能逐渐提高;WC/Fe复合材料的耐磨性能远优于马氏体耐磨钢。WC/Fe复合材料磨损机制主要为氧化磨损和磨粒磨损。在低载荷条件下,颗粒脱离基体造成氧化膜破裂,促使材料表面受损;较高载荷条件下,WC陶瓷颗粒破碎加速氧化膜破裂,加快了材料的磨损。  相似文献   

17.
刘政  吴强  林继兴  邓可月  胡咏梅  沈俊波 《材料导报》2016,30(Z2):64-67, 79
以正交实验规则设计3D激光熔覆试验来研究不同工艺参数对熔覆指标的影响,实验表明,WC添加量对熔覆层硬度、抗磨性影响最大,激光功率影响稍次之,激光扫描速度影响次之,送粉速度影响最小。对熔覆层组织分析表明,随WC添加量增多,更易生成CrB、W2B等硬质相,未分解的WC颗粒也越多,粘结相Ni枝晶越细小。激光熔覆Ni基WC合金涂层表面摩擦磨损特性表现为以磨粒磨损为主,塑性变形、粘着磨损和磨粒磨损相结合。  相似文献   

18.
为了解决严苛工况下的磨损问题,利用WC颗粒和中珞钢粉末,采用热压烧结法制备了局域化增强的钢结硬质合金/中珞钢复合材料,观察分析了复合材料界面,研究了试验载荷对复合材料相对耐磨性的影响规律及其磨损机理。结果表明:采用热压烧结法制备的局域化增强复合材料界面结合良好,增强区域组织致密,WC颗粒分布均匀;复合材料的耐磨性远高于中珞钢的,且其相对耐磨性随着试验载荷的增加而增大;在较高试验载荷下,复合材料的耐磨性优势更为显著,加载30 N时复合材料的相对耐磨性达到中鎔钢的3.7倍;在磨损过程中,凸出磨损面的增强区域对基体区域的有效保护作用和基体区域对增强区域的有效支撑作用,两者相互配合是复合材料具有优异耐磨性的主要原因;复合材料的磨损失效机理主要是显微切削和多次塑变疲劳断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号