首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An advanced inverse-T LDD (ITLDD) CMOS process has been developed. This process features self-aligned lightly-doped-drain/channel implantation for improved hot-carrier protection. Selective polysilicon deposition is used to define the thick polysilicon gate regions with a thin polysilicon gate regions overlying the lightly doped n- and p+ regions. Since the thick poly gate regions are defined by nitride sidewall spacers, optical lithography can be used to define sub-half-micrometer gate length MOSFETs. The LDD implants are performed after the n+ and p+ implants are annealed, resulting in MOSFET's with improved short-channel behavior due to the smaller lateral source/drain diffusion  相似文献   

2.
An advanced 0.5-μm CMOS technology which features disposable TiN spacers to define both lightly doped drain (LDD) implantation and self-aligned silicided source, drain, and gate regions is discussed. Since the LDD implantation sequences are reversed using the disposable TiN spacers, this process results in CMOS devices with low salicided junction leakage, reduced source/drain lateral diffusion, and shallow phosphorus N- and boron P- regions for improved short-channel behavior  相似文献   

3.
An advanced 0.5-μm CMOS disposable lightly doped drain (LDD) spacer technology has been developed. This 0.5-μm CMOS technology features surface-channel LDD NMOS and PMOS devices, n+/p+ poly gates, 125-A-thick gate oxide, and Ti-salicided source/drain/gate regions. Using only two masking steps, the NMOS and PMOS LDD spacers are defined separately to provide deep arsenic n+ regions for lower salicided junction leakage, while simultaneously providing shallow phosphorus n- and boron p- regions for improved device short-channel effects. Additionally, the process allows independent adjustment of the LDD and salicide spacers to optimize the LDD design while avoiding salicide bridging of source/drain to gate regions. The results indicate extrapolated DC hot-carrier lifetimes in excess of 10 years for a 0.3-μm electrical channel-length NMOS device operated at a power-supply voltage of 3.3 V  相似文献   

4.
A new cell structure for realizing a small memory cell size has been developed for 64-Mb dynamic RAMs (DRAMs). The source/drain regions of a switching transistor are raised by using a selective silicon growth technique. Because of lateral growth of the silicon over gate and field regions, the bitline contact can overlap the gate and field regions. The shallow source/drain junction by the raised source/drain structure realizes a reduction of gate length and isolation spacing. As a result, the DRAM memory cell area can be reduced to 37% of that using the conventional LDD MOSFET. In the fabrication of an experimental DRAM cell, a new stacked capacitor structure has been introduced to maintain enough storage capacitance, even in the small-cell area. The new capacitor is made by a simple and unique process using a cylindrical silicon-nitride sidewall layer. It has been verified that this cell structure has the potential to realize multimegabit DRAMs, such as 64-Mb DRAMs  相似文献   

5.
A novel metal-SiO2-InP MISFET (metal-insulator-semiconductor field effect transistor) structure is proposed. This device incorporates a modulation doped channel and the self-aligned gate feature of Si MOSFETs. The modulation doping provides very high electron mobility and the self-alignment of gate, source and drain provides high packing density. Analytical results on current-voltage and transconductance characteristics are presented. Significant enhancement in high frequency performance over conventional MISFETs, employing SiO2 as an insulator, is reported.  相似文献   

6.
An inverse-T lightly doped drain (ITLDD) CMOS process which features improved hot-carrier effects and self-aligned source/drain and channel implantation profiles is presented. Compensation effects by the heavy channel doping on the light N-/P- profile are minimized in this ITLDD structure, because the implants are self-aligned to the polysilicon-gate edge. In addition, because selective polysilicon deposition rather than an incomplete poly-gate etchback is used to define the ITLDD structure, a simpler, more manufacturable process is obtained due to improved control of the thin poly-gate shelf thickness  相似文献   

7.
A new extraction algorithm for the metallurgical channel length of conventional and LDD MOSFETs is presented, which is based on the well-known resistance method with a special technique to eliminate the uncertainty of the channel length and to reduce the influence of the parasitic source/drain resistance on threshold-voltage determination. In particular, the metallurgical channel length is determined from a wide range of gate-voltage-dependent effective channel lengths at an adequate gate overdrive. The 2-D numerical analysis clearly show that adequate gate overdrive is strongly dependent on the dopant concentration in the source/drain region. Therefore, an analytic equation is derived to determine the adequate gate overdrive for various source/drain and channel doping. It shows that higher and lower gate overdrives are needed to accurately determine the metallurgical channel length of conventional and LDD MOSFET devices, respectively. It is the first time that we can give a correct gate overdrive to extract Lmet not only for conventional devices but also for LDD MOS devices. Besides, the parasitic source/drain resistance can also be extracted using our new extraction algorithm  相似文献   

8.
A low-resistance self-aligned Ti-silicide process featuring selective silicon deposition and subsequent pre-amorphization (SEDAM) is proposed and characterized for sub-quarter micron CMOS devices. 0.15-μm CMOS devices with low-resistance and uniform TiSi2 on gate and source/drain regions were fabricated using the SEDAM process. Non-doped silicon films were selectively deposited on gate and source/drain regions to reduce suppression of silicidation due to heavily-doped As in the silicon. Silicidation was also enhanced by pre-amorphization, using ion-implantation, on the narrow gate and source/drain regions. Low-resistance and uniform TiSi2 films were achieved on all narrow, long n+ and p+ poly-Si and diffusion layers of 0.15-μm CMOS devices. TiSi2 films with a sheet resistance of 5 to 7 Ω/sq were stably and uniformly formed on 0.15-μm-wide n+ and p+ poly-Si. No degradation in leakage characteristics was observed in pn-junctions with TiSi2 films. It was confirmed that, using SEDAM, excellent device characteristics were achieved for 0.15-μm NMOSFET's and PMOSFET's with self-aligned TiSi2 films  相似文献   

9.
The I-V characteristics of inverted thin-film transistors (TFT) are studied. A simple lightly doped drain (LDD) structure is utilized to control the channel electric field at the drain junction and to improve the performance of the TFTs. The LDD region is self-aligned to the channel and the source/drain regions. It is created by a spacer around an oxide mask which exclusively defines the channel length Lch. Experimental data show that the leakage current, subthreshold swing SS, saturation current, and on/off current ratio of the inverted TFTs are closed related to Lch, LLDD, the drain bias, gate voltage, and LDD dose. With a gate deposited at low temperature, a saturation current of ~1.25 μA at 5 V and a leakage current of ~0.03 pA per micrometer of channel width were achieved. The current ratio therefore exceeds seven orders of magnitude, with an SS of 380 mV/decade. At 3.3 V, the current ratio is ~7×106  相似文献   

10.
We report for the first time the performance of ultrathin film fully-depleted (FD) silicon-on-insulator (SOI) CMOS transistors using HfO/sub 2/ gate dielectric and TaSiN gate material. The transistors feature 100-150 /spl Aring/ silicon film thickness and selective epitaxial silicon growth in the source/drain extension regions. TaSiN-gate shows good threshold voltage control using an undoped channel, which reduces threshold voltage variation with silicon film thickness and discrete, random dopant placement. Device processing for CMOS fabrication is drastically simplified by the use of the same gate material for both n- and p-MOSFETs. Electrical characterization results illustrate the combined impact of using high-k dielectric and metal gate on the performance of ultrathin film FD SOI devices.  相似文献   

11.
A raised source/drain (S/D) MOSFET with sidewall spacers formed both before and after selective epitaxial silicon deposition in S/D regions is discussed. The second spacer overlies any faceted regions of the epitaxial silicon near the gate edge and has advantages for MOSFETs with implant-doped or in-situ doped epitaxial silicon regions. In particular, the spacer can prevent S/D dopants from being implanted through any thinner faceted regions near the gate edge, which would otherwise result in a deeper than desired junction depth in the silicon substrate. Additionally, the spacer can prevent source-to-substrate salicide shorts through the thinner faceted regions  相似文献   

12.
A technology for fabricating lightly doped drain (LDD) MOSFET devices based on disposable sidewall spacers is presented. Using a thin polysilicon buffer layer between the low-temperature oxide (LTO) sidewall spacers and the oxidized polysilicon gate, a single masking step can be used to form the n- and n+ or p- and p+ source/drain implants for the NMOS and PMOS devices, respectively. In addition, the LTO sidewall spacers may be removed by a wet HF strip, thus minimizing additional damage to the gate oxide that may be caused by reactive ion etch removal. The disposable sidewall spacer technology is easily adaptable to a CMOS process as demonstrated by the fabrication of a 4 K×4 SRAM circuit using a conventional 1.5-μ CMOS technology  相似文献   

13.
A novel ultrathin elevated channel thin-film transistor (UT-ECTFT) made using low-temperature poly-Si is proposed. The structure has an ultrathin channel region (300 Å) and a thick drain/source region. The thin channel is connected to the heavily doped drain/source through a lightly doped overlapped region. The lightly doped overlapped region provides an effective way to spread out the electric field at the drain, thereby reducing significantly the lateral electric field there at high drain bias. Thus, the UT-ECTFT exhibits excellent current saturation characteristics even at high bias (Vds=30 V, Vgs=20 V). Moreover, the UT-ECTFT has more than two times increase in on-state current and 3.5 times reduction in off-state current compared to conventional thick channel TFT's  相似文献   

14.
The oxide sidewall-spacer technology was utilized to fabricate CMOS/SOS devices with the self-registered gradually doped source drain extension structure. No additional photo masking or ion implantation steps are required than in the case of a conventional polysilicon gate CMOS/SOS process. The devices revealed significant improvements in the breakdown voltage, leakage current and the short channel effect.  相似文献   

15.
利用0.35μm工艺条件实现了性能优良的小尺寸全耗尽的器件硅绝缘体技术(SOI)互补金属氧化物半导体(FD SOI CMOS)器件,器件制作采用双多晶硅栅工艺、低掺杂浓度源/漏(LDD)结构以及突起的源漏区。这种结构的器件防止漏的击穿,减小短沟道效应(SCE)和漏感应势垒降低效应(DIBL);突起的源漏区增加了源漏区的厚度并减小源漏区的串联电阻,增强了器件的电流驱动能力。设计了101级环形振荡器电路,并对该电路进行测试与分析。根据在3V工作电压下环形振荡器电路的振荡波形图,计算出其单级门延迟时间为45ps,远小于体硅CMOS的单级门延迟时间。  相似文献   

16.
We propose a definition of MOSFET effective channel length (LEFF), that provides a method of determining LEFF as a constant, and external resistance (REXT) virtually as a constant, even for lightly doped drain (LDD) transistors. A unified relationship between this LEFF and MOSFET drive current (linear and saturation) that is common to a wide range of drain structures was confirmed. Therefore, the LEFF is useful, not only for compact analytical models, but also as an index of MOSFET performance applicable to both single drain and LDD devices. The dependence of the channel length on the source/drain structure was clarified by introducing the concept of local contribution to channel length. The LEFF varies, even if the metallurgical channel length is fixed, depending on the design of the source/drain  相似文献   

17.
We investigated the lifetimes for various poly-Si thin film transistor (TFT) structures. A gate-overlapped lightly doped drain (GOLDD) structure was self-aligned by the side etching of Al-Nd in an Al-Nd/Mo gate electrode. The dopant activation process in the LDD regions of GOLDD TFTs was performed by using a H2 ion-doping technique. We also observed the effect of lifetime on the source/drain activation process. The thermal annealing of the source/drain region was found to extend the lifetime. The predicted lifetime of our GOLDD poly-Si TFT is superior to those of non-lightly doped drain (non-LDD) and lightly-doped drain (LDD) poly-Si TFTs. The trapped-electron density at the drain junction after bias-stressing was also investigated using a two-dimensional (2-D) simulation  相似文献   

18.
A unified model for hot-carrier-induced degradation in LDD n-MOSFETs is presented. A novel oxide spacer charge pumping method enables interface trap generation in the spacer and overlap/channel regions to be distinctly separated. An excellent correlation between trap generation in the spacer region and linear drain current degradation at high gate voltage is observed. Moreover, trap generation in the overlap/channel region is found to correlate well with linear drain current degradation at low gate voltage. The results point unambiguously to a two-mechanism degradation model involving drain resistance increase by trap generation in the spacer region, and carrier mobility reduction by trap generation in the overlap/channel region. The combined effect of a time-independent lateral electron temperature profile and a finite density of interface trap precursors within the LDD region leads to a self-limiting degradation behavior. This insight forms the basis of a time-dependent trap generation model, which indicates the existence of a single degradation curve. The fact that the degradation curves at different stress drain voltages fall onto a time-scaled version of the single degradation curve provides strong support for the model. This also offers a straightforward and yet accurate means by which the hot-carrier lifetime corresponding to a specific failure criterion may be extracted. Finally, a power-law relationship between hot-carrier lifetime and substrate current is also observed for the LDD devices, thus preserving the physical essence based on which earlier lifetime models for conventional drain devices are established.  相似文献   

19.
A CMOS device which has an extended heavily-doped amorphous silicon source/drain layer on the field oxide and an amorphous silicon local interconnection (ASLI) layer in the self-aligned source/drain region has been studied. The ASLI layer has some important roles of the local interconnections from the extended source/drain to the bulk source/drain and the path of the dopant diffusion sources to the bulk. The junction depth and the area of the source/drain can be controlled easily by the ASLI layer thickness. The device in this paper not only has very small area of source/drain junctions, but has very shallow junction depths than those of the conventional ones. The electrical characteristics of this device are as good as those of the conventional CMOS device. An operating speed, however, is enhanced significantly compared with the conventional ones, because the junction capacitance of the source/drain is reduced remarkably due to the very small area of source/drain junctions. For a 71-stage unloaded CMOS ring oscillator, 128 ps/gate has been obtained at power supply voltage of 3.3 V. Utilizing this proposed structure, a buried channel PMOS device for the deep submicron regime, known to be difficult to implement, can be fabricated easily.  相似文献   

20.
An ultrathin vertical channel (UTVC) MOSFET with an asymmetric gate-overlapped low-doped drain (LDD) is experimentally demonstrated. In the structure, the UTVC (15 nm) was obtained using the cost-effective solid phase epitaxy, and the boron-doped poly-Si/sub 0.5/Ge/sub 0.5/ gate was adopted to adjust the threshold voltage. The fabricated NMOSFET offers high-current drive due to the lightly doped (<1/spl times/10/sup 15/ cm/sup -3/) channel, which suppresses the electron mobility degradation. Moreover, an asymmetric gate-overlapped LDD was used to suppress the offstate leakage current and reduce the source/drain series resistance significantly as compared to the conventional symmetrical LDD. The on-current drive, offstate leakage current, subthreshold slope, and DIBL for the fabricated 50-nm devices are 325 /spl mu/A//spl mu/m, 8/spl times/10/sup -9/ /spl mu/A//spl mu/m, 87 mV/V, and 95 mV/dec, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号