首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
大湖池水体透明度、水位及两者之间关系分析   总被引:2,自引:0,他引:2  
综合鄱阳湖国家级自然保护区内大湖池野外量测的和从中分辨率成像光谱仪(MODIS)影像反演得到的水体透明度信息分析其季节性变化规律,并探讨其与水位之间的关系。研究显示,大湖池水体透明度呈明显的季节性变化,即在春、晚秋和冬季透明度比较低,而在夏季比较高;大湖池水体透明度与水位具有显著的相关性。  相似文献   

2.
In recent decades, three important events have likely played a role in changing the water temperature and clarity of the Laurentian Great Lakes: 1) warmer climate, 2) reduced phosphorus loading, and 3) invasion by European Dreissenid mussels. This paper compiled environmental data from government agencies monitoring the middle and lower portions of the Great Lakes basin (lakes Huron, Erie and Ontario) to document changes in aquatic environments between 1968 and 2002. Over this 34-year period, mean annual air temperature increased at an average rate of 0.037 °C/y, resulting in a 1.3 °C increase. Surface water temperature during August has been rising at annual rates of 0.084 °C (Lake Huron) and 0.048 °C (Lake Ontario) resulting in increases of 2.9 °C and 1.6 °C, respectively. In Lake Erie, the trend was also positive, but it was smaller and not significant. Water clarity, measured here by August Secchi depth, increased in all lakes. Secchi depth increased 1.7 m in Lake Huron, 3.1 m in Lake Ontario and 2.4 m in Lake Erie. Prior to the invasion of Dreissenid mussels, increases in Secchi depth were significant (p < 0.05) in lakes Erie and Ontario, suggesting that phosphorus abatement aided water clarity. After Dreissenid mussel invasion, significant increases in Secchi depth were detected in lakes Ontario and Huron.  相似文献   

3.
Water clarity is an important environmental variable that may affect fish populations by altering the visual environment. Effects can change feeding ability, as well as alter predation risk. The western basin of Lake Erie provides a valuable model system for studying the effects of transparency because the two main tributaries, the Maumee and Detroit rivers, differ substantially in clarity. We used Generalized Additive Models (GAMs) to quantify the relationship between transparency and the observed abundance and length of age-0 yellow perch (Perca flavescens) in August, based on surveys from 1986 to 2006. Secchi data from June to August were included in the models that best explained the variation in yellow perch abundance and length. August values for bottom oxygen and bottom temperature also increased model fit for abundance, whereas only bottom temperature improved model fit for length. Our models indicate that transparency was positively related to the August length while abundance of age-0 yellow perch was inversely related to transparency. Highest abundance was observed in areas with the lowest transparency, with peak abundances observed in areas with less than 1 m of Secchi depth. This is in contrast to August length, which increased as transparency increased, to an asymptote at around 3 m of Secchi depth. The split nature of water clarity conditions in the western basin of Lake Erie has resulted in areas with higher growth potential, versus areas with higher apparent survival.  相似文献   

4.
Satellite observations of aquatic colour enable environmental monitoring of the Great Lakes at spatial and temporal scales not obtainable through ground-based monitoring. By merging data from the Coastal Zone Color Scanner (CZCS) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), monthly binned images of water-leaving radiance over the Great Lakes have been produced for the periods 1979–1985 and 1998–2006. This time-series can be interpreted in terms of changes in water clarity, showing seasonal and inter-annual variability of bright-water episodes such as phytoplankton blooms, re-suspension of bottom sediments, and whiting events. Variations in Secchi disk depth over Lakes Erie and Ontario are predicted using empirical relationships from coincident measurements of water transparency and remotely-sensed water-leaving radiance. Satellite observations document the extent to which the water clarity of the lower Great Lakes has changed over the last three decades in response to significant events including the invasion of zebra mussels. Results confirm dramatic reductions in Lake Ontario turbidity in the years following mussel colonization, with a doubling of estimated Secchi depths. Evidence confirms a reduction in the frequency/intensity of whiting events in agreement with suggestions of the role of calcium uptake by mussels on lake water clarity. Increased spring-time water clarity in the eastern basin of Lake Erie also corroborates previous observations in the region. Despite historical reports of localised increases in transparency in the western basin immediately following the mussel invasion, image analysis shows a significant increase in turbidity between the two study periods, in agreement with more recent reports of longer term trends in water clarity. Through its capacity to provide regular and readily interpretable synoptic views of regions undergoing significant environmental change, this work illustrates the value of remotely sensing water colour to water clarity monitoring in the lower Great Lakes.  相似文献   

5.
Monitoring Lake Simcoe Water Clarity Using Landsat-5 TM Images   总被引:1,自引:1,他引:0  
This study focuses on utilizing satellite remote sensing to monitor the water clarity of Lake Simcoe, Ontario, Canada, which has been suffering from the overload of phosphorus (TP) and therefore eutrophication for decades. The dataset includes 22 cloud-free Landsat-5 Thematic Mapper (TM) images, as well as the nearly simultaneous in-situ observations from 15 stations on the lake. Compared to the general model used to estimate the Secchi Disk Transparency (SDT), a parameter for water clarity measurements, an improved model is developed, from the TM images. The results of these estimations are validated using the in-situ data by linear regression, and the accuracies are measured by the coefficient of determination R 2. The results reveal an indication of high model fit between the majority of SDT predictions and the in-situ observations. Also, the improved SDT model provides higher prediction accuracies than the general one when applied to 68.2% (15 out of 22) of the images. The estimated clarity maps indicate that the turbid water is normally distributed at the nearshore areas and the northeastern region. Meanwhile, the southwestern lake has much clearer water than the other regions. In addition, the southern bay has always been suffering from a serious water quality problem even till now. The water clarity of Lake Simcoe shows strong seasonal patterns, that it is at its worst in August and September annually and much better in the other sampling seasons. On an overall scale, the lake water clarity kept relatively stable from 1987 until the fall of 1992, followed by a gradual increase until 2000, after a slight decrease, and lastly stayed consistent until the summer of 2008.  相似文献   

6.
There are a multitude of satellite-derived water clarity and turbidity indicators to support the decision making of environmental managers and policy makers. However, water quality dynamic ranges addressed by these indicators can differ significantly, subjecting non-expert users to potential pitfalls. Here we propose a satellite water clarity-turbidity index (CTI) as a simplified way to capture major changes in water clarity/turbidity across all water types in the Great Lakes. The CTI is defined to merge key information from three prerequisite variables derived from Visible Infrared Imaging Radiometer Suite (VIIRS) measurements, namely, the Secchi disk depth, the particulate backscattering coefficient, and the nephelometric turbidity, which are suitable for clear, intermediate, and turbid waters, respectively. Application to the Great Lakes shows that with one parameter, the CTI can illustrate major spatial and temporal patterns that are not entirely visible with each of the three original indicators alone. Using the CTI, we identified significant decrease in water turbidity in Lakes Michigan and Huron from 2000 to 2005, during which daily variability of CTI in August initially spiked and then gradually decreased most likely owing to diminishing whiting events. The CTI is a convenient and holistic assessment tool for water quality management.  相似文献   

7.
Lake monitoring studies are essential for understanding the modern biogeochemical and sedimentological cycles to enable and support the interpretation of paleolimnological records. However, such studies remain scarce for high-altitude lakes in general and specifically for lakes on the Tibetan Plateau. We investigated the hydro-chemical and physical properties of lake Nam Co and its twenty-one major inflowing rivers from 2011 to 2013. The modern sediment flux and sediment properties were determined for samples collected by sediment traps deployed for the same study period at different water depths at three sites in Nam Co. Carbonate weathering in the catchment, especially pronounced during the monsoon season, was identified as the predominant origin of dissolved riverine hydrochemical components. The sediment budget shows remarkable temporal variation, with trends of intensified sediment fluxes during the non-monsoon season and small variations within the monsoon season. Spatially, considerably higher sedimentation fluxes were detected in nearshore sites (T1 and T3) and attributed to wind-induced resuspension. Vertically, resuspension is also an important factor that influences the sedimentation process, which leads to an exponential increase of the budget from the surface to the bottom layer. Autochthonous carbonate deposition rates presented a similar seasonal pattern, with the total sedimentation rates under the influence of the water balance. Low values occurred during the monsoon season due to dilution while deposition rapidly increased during the early post-monsoon season when the lake level decreased. Intensive carbonate deposition also occurred during the non-monsoon season, which dominated the lake hydrochemistry dynamics.  相似文献   

8.
The dominance of cyanobacterial algae in light‐limited, shallow freshwater Lake Baringo is a major environmental concern in regard to Kenyan water quality and public health protection agencies. Accordingly, this study focused on determining the effect of different environmental factors on cyanobacteria dynamics in different sediment disturbance zones of the lake and in different seasons. This study also sought to bridge the knowledge gap regarding the influence of water clarity on cyanobacteria dynamics in the lake. Samples were collected from the field, stored in ice and transported to the laboratory for nutrient analyses. Cyanobacteria cultures isolated from the lake were grown under a 12:12 light/dark cycle. The frequency of dividing cells (FDC) technique, and a fluorescence microscopy technique, was used to count growing cyanobacteria cells. Specific cyanobacteria organic carbon synthesis was significantly negatively correlated with turbidity for the southern (= ?0.6573; P < 0.05) and central sediment disturbance zones (= ?0.6847; P < 0.05). This study indicated that water clarity is an environmental phenomenon that facilitates the movement of cyanobacteria into the turbid areas of the lake, where their production levels are significantly high, in contrast to the clear water along the edges of the water–land interface during the wet season (April to August) and dry season (September to March). Water clarity potentially enhances cell division inhibition and multiplication, thereby positively influencing cyanobacteria dynamics in Lake Baringo. Thus, it is concluded that the cyanobacteria growth rate resulting from use of the FDC technique suggests a link with inflowing water clarity that can be used to monitor in‐lake water quality, to better manage cyanobacteria blooms in Lake Baringo and in lakes and reservoirs elsewhere.  相似文献   

9.
Optical and biological measurements were performed in Lake Ülemiste in the summer of 1997 (four measurement days), and from May to October in 1998 (12 measurement days). This kind of data, describing the type and amount of optically active substances in the water, phytoplankton characteristics, the underwater light field, and temperature–oxygen situation in the lake are necessary when estimating the ecological state of the lake. Lake Ülemiste is the main drinking water reservoir of Tallinn, the capital of Estonia. Phytoplankton abundance and biomass, chlorophyll a and suspended matter were determined from collected Lake Ülemiste water samples in the laboratory. Spectrophotometrical processing of the filtered and unfiltered water was carried out to describe the beam attenuation coefficient spectra and optical influence of yellow substance in the water. Vertical profiles of downwelling irradiance of the PAR (400–700 m) region of the spectrum (and from these data the averaged over depth diffuse attenuation coefficient) were determined. The relative transparency of the water was estimated by using a Secchi disk. Passive optical remote measurements were episodically made from aboard a boat. Results obtained confirmed that Lake Ülemiste is turbid (almost hypertrophic), comparable with most turbid lakes in Estonia (e.g. Lake Võrtsjärv) and Finland (Lake Tuusulanjärvi). Its chlorophyll a content varied within the range 13–121 mg m–3, phytoplankton biomass 3–107 mg L–1, phytoplankton abundance 65 000–999 000 mL–1, suspended matter 8–34 mg L–1, effective concentration of the yellow substance 6–30 mg L–1, diffuse attenuation coefficient of light in the PAR region 1.0–3.3 m–1 and a Secchi disk depth of 0.5–1.75 m. The temporal variation of the spatial averages of these parameters during 1998 was analysed. Almost all characteristics showed an increase from May to midsummer with a maximum in late July or in August (correspondingly the Secchi depth values were minimal in late summer). The amount of yellow substance was an exception, which was nearly constant during the observation period. The maximum level of chlorophyll a content in July and August 1998 markedly exceeded that in 1997, despite the fact that the summer of 1997 was sunny, but the summer of 1998 was cold and rainy. The correlative relationships between the different parameters were investigated together with the respective data for other lakes. They show that the data of Lake Ülemiste supplemented the correlation graph in the region of turbid lakes, whereby in all cases the correlation coefficient increased following the addition of Lake Ülemiste data. The highest correlation coefficient was obtained when light attenuation coefficient values were correlated with a sum of weighted concentrations of chlorophyll a, yellow substance and suspended matter (multiple regression analysis).  相似文献   

10.
Due to the lack of long-term records on shallow lake environmental change, knowledge of the processes and mechanisms behind the limnological response of many shallow floodplain lakes to hydrological alterations and nutrient loading is often limited. We examined seasonal monitoring data and a dated sediment core from Lake Poyang, a large floodplain lake located on the Yangtze floodplain in the SE China. Multivariate analysis based on contemporary data (diatoms and water quality) revealed that the seasonal changes in the diatom assemblage of the lake were correlated with water temperature and Secchi depth (SD), although the weak spatial effect was not negligible. During the dry winter season, low water temperature, low SD, and high nutrient levels, were accompanied by high abundances of planktonic Aulacoseira species along with Stephanodiscus hantzschii, a species well adapted to cold and eutrophic waters. During the summer wet season, however, when water temperature and SD were high and nutrient levels low, benthic and epiphytic diatoms, such as the genus Achnanthes, dominated. Sediment records of diatoms and geochemistry were used to estimate long-term variation in the ecological condition of the lake. During the past ~60 years, the lake has shifted from a natural hydrologically connected, oligotrophic lake dominated by benthic and epiphytic diatoms to a poorly hydrologically connected, eutrophic state driven by nutrient-tolerant planktonic and eutrophic diatoms. Furthermore, our results indicate that the proposed Poyang dam may severely affect the water quality and ecosystem of the lake by altering its seasonal hydrology.  相似文献   

11.
洞庭湖水位变化对水质影响分析   总被引:2,自引:0,他引:2  
长江中下游江湖关系的剧烈演变引起了洞庭湖水位的相应变化,并带来了显著的生态环境效应。为了揭示洞庭湖水位变化与水质变化的内在联系和特征,根据洞庭湖区典型水文站1995年-2010年历史水位与水质观测资料,从年内季节和年际时间尺度上,对洞庭湖水位变动情况及其对水质的影响进行了分析。结果表明,所选的洞庭湖区的典型水文站15年来水位总体呈现下降的趋势;在年际变化上,水质指标TN、高锰酸盐指数随着水位的降低而升高;年内季节变化上,TN含量表现出枯水期>平水期>丰水期的特征,而TP含量表现出相反的特性,随着丰水期水位的升高而含量也相对升高。总体上,洞庭湖水位变化与水质状况表现出较强的相关性。  相似文献   

12.
Previous work during a major sediment resuspension event (March 1988) in southern Lake Michigan demonstrated that nutrients and carbon derived from resuspended sediment stimulated intense winter heterotrophic production while simultaneously decreasing light availability and autotrophic biomass. However, the role of riverine inputs on plankton metabolism remained unclear. Here we present results from a simulated enrichment experiment (March 2000) designed to examine the influence of resuspended sediments and riverine inputs on Lake Michigan plankton dynamics. Lake water amended with realistic levels of river water, coastal resuspended sediment and river water + sediment all showed enhanced heterotrophic bacterial production and plankton respiration rates, relative to the lake water control. Bacterial production increased by approximately 4× in river water treatments and by a factor of 2.5× for the sediment only treatment compared to lake water controls. Rates of net primary production were stimulated by river water (8.5×) and resuspended sediment (3×), but most by a combination of river water + sediments (11×). Community respiration showed a similar response with rates approximately 8x higher in river water amendment treatments and 3.5× higher in the sediment treatment. Extrapolating experimentally determined production rates to the southern Lake Michigan basin indicated that heterotrophic and autotrophic production in this nearshore region may be enhanced by as much as 3× and 5.2× due to these source inputs. Indeed, field measurements throughout southern Lake Michigan from 1998–2000 support these experimental results. Experimental and field observations suggest that both seasonal riverine inputs and episodic resuspended sediments influence the regional scale ecosystem metabolism and biogeochemistry in Lake Michigan.  相似文献   

13.
淮河流域洪涝灾害频繁,洪泽湖对其防洪除涝起关键性作用。掌握洪泽湖水沙变化趋势及突变点对流域水资源管理、水沙调节有重要的现实意义。利用入、出洪泽湖各支流代表水文站1975-2015年实测年径流量和年输沙量数据,分析入、出洪泽湖水量和沙量分布特征。通过Mann-Kendall(M-K)秩相关检验法和Pettitt突变点识别法研究入湖、出湖水沙量年际变化趋势和突变点。在此基础上,从流域降雨、水资源开发利用和水库滞沙三个方面分析了洪泽湖水沙变化的主要影响因素。研究表明:洪泽湖入湖、出湖水量年际变化趋势一致,无明显减小趋势,且无显著突变点。入湖沙量有小幅减小趋势,出湖沙量M-K统计值超过95%显著性水平,有明显减小趋势。入湖、出湖沙量发生突变的年份为1991年。对影响因素的分析得到:降雨量变化是水量变化的重要影响因素。1993-2015年,入湖水量呈不明显减小趋势则与流域用水量明显增加、水资源开发利用程度不断提高有关。上游水库建设是导致洪泽湖沙量有明显减小趋势的主要原因,1991年治淮工程的实施,水库复建和水土保持等措施是沙量突变的主要原因。  相似文献   

14.
After the Great Lakes, Lake Simcoe is the largest lake in southern Ontario. Located within a 1 hour drive of half the population of Ontario, there is currently major concern over the impact of rapid urbanization on the nutrient status of the lake. However, despite a more than doubling of the human population in the Lake Simcoe watershed over the past two decades, average total phosphorus (TP) levels were lower in 2000–2003 compared with 1980–1983 at six of eight lake stations, and declines were significant at the most nutrient-enriched near-shore sites located in Kempenfelt Bay (0.29 μg/L/year) and Cook's Bay (0.31–0.41 μg/L/year). Total P concentrations varied two-fold across the lake, and phytoplankton bio-volume followed a similar pattern, with greatest phytoplankton abundance occurring at high TP sites, particularly in Cook's Bay. Nevertheless, steep declines in bio-volume occurred at all sites beginning in the mid-1990s, and water clarity (Secchi disk depth) improved concurrently such that Secchi depths were 40–80% greater in 2000–2003 compared with 1980–1983. Zebra mussels, which became established in Lake Simcoe around 1995, likely contributed to decreased phytoplankton bio-volume and related improvements in water clarity, which began during the mid-1990s. Despite major reductions in phytoplankton bio-volume, average rates of dissolved oxygen (DO) depletion (18 m-bottom zone; normalized to 4°C) did not change substantially over time, and were similar in 2000–2003 (average 1.25 ± 0.21 g O2/m3/month) compared with 1980-1983 (average 1.26 ± 0.19 g O2/m3/month). In contrast, minimum, end-of-summer DO levels (18 m-bottom) increased slightly over the period of record. Although there has been some improvement in end-of-summer DO availability, DO concentrations continue to decline to levels that are limiting to many fish species (e.g., 3.8 mg O2/L in 2001) by the end of the summer stratified period.  相似文献   

15.
Compared to the Great Lakes, their connecting channels are relatively understudied and infrequently assessed. To address this gap, we conducted a spatially-explicit water quality assessment of two connecting channels, the St. Marys River and the Lake Huron-Lake Erie Corridor (HEC) in 2014–2016. We compared the condition of the channels to each other and to the up- and downriver Great Lakes with data from an assessment of the Great Lakes nearshore. In the absence of channel-specific thresholds, we assessed the condition of the area of each channel as good, fair, or poor by applying the most protective water quality thresholds for the downriver lake. Condition of the St. Marys River was rated mostly fair for total phosphorus (TP, 56% of the area) and mostly good (61% of the area) for chlorophyll a. Area-weighted mean concentrations of these parameters were intermediate to Lake Superior and Lake Huron. Unlike Lake Superior and Lake Huron, a large proportion (97%) of the area of the St. Marys River was in poor condition for water clarity based on Secchi depth. Area-weighted mean concentrations of TP and chlorophyll a in the HEC were more like Lake Huron than Lake Erie. For these indicators, most of the area of the HEC was rated good (81% and 86%, respectively). Interpretation of assessment results is complicated by variation in thresholds among and within lakes. Appropriate thresholds should align with assessment objectives and in the case of connecting channels be at least as protective as thresholds for the downriver lake.  相似文献   

16.
Lake Erie western basin (WB) cyanobacterial blooms are a yearly summer occurrence; however, blooms have also been reported in the offshore waters of the central basin (CB), and very little is known about what drives these blooms or their potential for cyanobacterial toxins. Cyanobacteria Index was quantified using MODIS and MERIS data for the CB between 2003 and 2017, and water samples were collected between 2013 and 2017. The goals were to 1) quantify cyanobacteria, 2) determine environmental drivers of CB blooms, and 3) determine the potential for cyanobacterial toxins in the CB. Dolichospermum (Anabaena) occurred in the CB during July before the onset of the WB bloom, and then in August and September, the cyanobacteria community shifted towards Microcystis. The largest Dolichospermum blooms (2003, 2012, 2013, and 2015) were associated with reduced water clarity (Secchi disk depth?<?4?m), whereas large CB Microcystis blooms (2011 and 2015) were associated with large WB blooms. Dolichospermum blooms occurred in high nitrate concentrations (>20?μmol/L) and high nitrogen-to?phosphorus ratios (>100), which indicate nutrient concentrations or ratios did not select for Dolichospermum. Additionally, the sxtA gene, but not mcyE or microcystins, were detected in the CB during July 2016 and 2017. The mcyE gene and microcystins were detected in the CB during August 2016 and 2017. The results indicate the CB's potential for cyanotoxins shifts from saxitoxins to microcystins throughout the summer. Continued monitoring of cyanobacteria and multiple cyanobacterial toxins is recommended to ensure safe drinking water for CB coastal communities.  相似文献   

17.
Monitoring the water level and volume changes of lakes and reservoirs is essential for deepening our understanding of the temporal and spatial dynamics of water resources in the Yellow River Basin, with a view to better utilizing and managing water resources. In recent years, there have been many studies on monitoring water level and volume changes in inland waters, but they were mainly focused on radar altimetry and the full waveform LiDAR ICESat, which was retired in 2010. Few studies based on the latest photon-counting LiDAR ICESat-2 have been reported. Compared with previous sensors, ICESat-2 has great advantages in footprint size, transmitting frequency, pulse number, etc, but its performance in monitoring water level and volume changes in inland waters has not been fully explored. Here we investigated the spatial distribution of water level and volume changes of 11 lakes and 8 reservoirs in the Yellow River Basin based on ICESat-2 and Google Earth Engine, and analyzed the factors affecting the measurement uncertainties. In-situ validation of lake level in Lake Qinghai indicates that the Root Mean Square Error (RMSE) of our result is only 7 cm after the reference coordinate system conversion. We found that the water level trend of the natural lake shows significant seasonal variations, while the water level trend of the reservoir shows a sharp rise and fall. In addition, precipitation plays a decisive role in the changes in natural lake levels and indirectly affects the artificial control of reservoirs’ water discharges. The uncertainty of water volume change monitoring is mainly affected by water level measurement uncertainty for lakes, while for reservoirs, that is affected by the combination of water level and area measurement uncertainties. The stability of lake level measurement increases with the increase in photon counts. The introduction of ICESat-2 ATL13 Significant Wave Height might lead larger standard deviation in water level measurement. According to the law of propagation of uncertainty, the uncertainty of the water volume change estimation by the combination of ICESat-2 and GEE is less than 9 %.  相似文献   

18.
荆江三口与洞庭湖水沙变化及影响   总被引:1,自引:0,他引:1  
根据荆江三口与洞庭湖50年水沙资料,对荆江三口分流分沙变化、洞庭湖入湖和出湖的水沙变化、洞庭湖面积和容积变化、汇流河段的水位变化四个方面进行分析研究。从长系列资料来分析,荆江三口分流分沙自20世纪50年代以来明显减少尤其藕池口最为明显;入湖和出湖水沙也有减少趋势,洞庭湖面积和容积自20世纪90年代中期以来有增加趋势;在高水位时城陵矶水位较裁弯前抬高约1.8 m,低水位时较裁弯前抬高约2 m。  相似文献   

19.
Environment and Climate Change Canada has monitored Niagara River water quality in support of the Great Lakes Water Quality Agreement since establishing a fixed site at Niagara-on-the-Lake in 1975. Using over 40 years of data from this site along with the Fort Erie location added in 1983, we examine the status and trends of concentrations and loadings of nutrients and major ions and assess evidence of sources between the two stations. Trends were observed for the majority of measured parameters and there is strong agreement between trends in concentrations and loadings which are generally higher at the downstream site; however, upstream/downstream differences indicate relatively little loading occurs along the length of the river itself. For total phosphorus (TP), inputs from Lake Erie via the Niagara River account for the majority of loading to Lake Ontario and, in some years, exceed the 7000 MTA Lake Ontario target. Between 2014 and 2018, we calculate the mean Niagara River TP loading to be 5275 MTA. We highlight the major changes in water quality constituents over time, including TP, and reveal increased seasonal consumption of TP and SiO2, reflecting potential increases in the biological productivity in Lake Erie. The long and rich Niagara River dataset, which comprises year round sampling (including rare winter data), provides detailed tracking of changing Great Lakes water quality and could be further utilized to assess the impacts of climate change, improve understanding of diatom and harmful algal bloom dynamics, and enhance knowledge of in-lake major ion and nutrient dynamics.  相似文献   

20.
The spatio‐temporal dynamics of the trophic state of a lake are crucial in defining its water quality, as well as biodiversity. Accordingly, this study focused on the spatio‐temporal variations of the trophic state, and the possible causes of the heterogeneous turbidity in Lake Naivasha, Kenya. The trophic state of the lake oscillated between a eutrophic and hypereutrophic condition, being found to be more eutrophic than reported in previous studies, indicating a progressive deterioration of its water quality. Inferences from the graphical representation of the deviations of total phosphorus and Secchi depth from the chlorophyll‐a trophic state indices revealed that the lake is predominantly phosphorus limited. Furthermore, the turbidity in the northern part of the lake is dominated by suspended sediment and dissolved coloured material. Discriminant analysis resulted in identification of three distinct trophic state regions in Lake Naivasha, namely the northern region, the mid and southern part and the more or less isolated Crescent Lake. The results of this study provide a good basis for further investigation of the current loading magnitude of both nutrients and sediments, in order to facilitate sustainable management to ensure community integrity and ecosystem functions of the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号