首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anaerobic biodegradation and inhibitory effects of nonionic and anionic surfactants on methanogenic fermentation were tested in incubation experiments with anoxic sediment samples and sewage sludge. Alkylsulfonates and alkylbenzenesulfonates were not degraded but inhibited methanogenesis from sludge constituents at concentrations ≥10 mgl−1. Sodium dodecylsulfate was at least partly degraded after adaptation at concentrations 100 mgl−1 and the sulfate group was reduced to sulfide. The polyethyleneglycol moiety of alkylphenolethoxylates was fermented to methane at concentrations 500 mgl−1 whereas the alkylphenol residue probably remained unchanged. Alkylethoxylates were completely degraded to methane and CO2 at concentrations up to 1.0 gl−1. Complete anaerobic degradation of this surfactant type to methane, CO2, and traces of acetate and propionate was demonstrated in a lab scale anaerobic fixed-bed reactor, either with prereduced mineral salts medium or with air-saturated artificial wastewater. This process lends itself as a suited, inexpensive means for treatment of wastewaters containing enhanced loads of nonionic surfactants, e.g. from the surfactant manufacturing or processing industry.  相似文献   

2.
The anaerobic degradation of fatty alcohol polyglycol ethers was studied in a model sludge digester employing stearyl alcohol ethoxylate which was 14C-labelled either in the alkyl or in the heptaglycol chain. After 4-weeks' incubation of the 14C-compounds at 35°C in the presence of raw sludge as additional digestible substrate more than 80% of the initial radioactivity was found as methane and carbon dioxide. In addition, the major part of radioactivity in the digested sludge, corresponding to nearly 10% of added 14C, was attributable to biomass so that ultimate degradation of the two model surfactants amounted to more than 90%. Analysis of the small fraction of radiolabelled metabolites in the sludge supernatant allowed conclusions with regard to the anaerobic degradation route of linear alcohol ethoxylates. After primary biodegradation of the surfactant molecule by scission into the alkyl and poly(ethylene glycol) moieties the further biodegradation of the latter seems to proceed as under aerobic conditions, i.e. via oxidative or hydrolytic depolymerization steps. Eventually, ultimate biodegradation of the obtained monomers (C2-units) leads to the formation of the gaseous end products.  相似文献   

3.
《Water research》1987,21(6):661-667
The anaerobic degradation of fatty alcohol polyglycol ethers was studied in a model sludge digester employing stearyl alcohol ethoxylate which was 14C-labelled either in the alkyl or in the heptaglycol chain. After 4-weeks' incubation of the 14C-compounds at 35°C in the presence of raw sludge as additional digestible substrate more than 80% of the initial radioactivity was found as methane and carbon dioxide. In addition, the major part of radioactivity in the digested sludge, corresponding to nearly 10% of added 14C, was attributable to biomass so that ultimate degradation of the two model surfactants amounted to more than 90%. Analysis of the small fraction of radiolabelled metabolites in the sludge supernatant allowed conclusions with regard to the anaerobic degradation route of linear alcohol ethoxylates. After primary biodegradation of the surfactant molecule by scission into the alkyl and poly(ethylene glycol) moieties the further biodegradation of the latter seems to proceed as under aerobic conditions, i.e. via oxidative or hydrolytic depolymerization steps. Eventually, ultimate biodegradation of the obtained monomers (C2-units) leads to the formation of the gaseous end products.  相似文献   

4.
D.E. Sullivan 《Water research》1983,17(9):1145-1151
The biodegradation of DTDMAC (ditallowdimethylammonium chloride, a fabric softening agent) was established in semi-batch activated sludge reactors. Three 14C-forms of DTDMAC were studied separately under the simulated organic loading rates of conventional and extended aeration activated sludge treatment. Primary biodegradation was shown by means of a specific analytical technique in combination with radiochemical procedures. Ultimate biodegradation for each carbon position in the DTDMAC molecule was established by the detection of 14CO2. Intermediate metabolites were followed throughout the study by both radio thin-layer chromatography and radiochemical procedures. Each carbon position of the DTDMAC molecule was equally accessible to metabolism and ultimate degradation by acclimated microorganisms. Degradation occurred more rapidly under extended aeration conditions and was influenced by the strong tendency of DTDMAC to associate with the microbial population. The low levels of metabolites observed were not of a single classification or characteristic and they did not persist in the activated sludge. This study suggests that DTDMAC removal in an activated sludge plant is a result of both sorption/precipitation and biodegradation mechanisms.  相似文献   

5.
Performance of laboratory scale completely mixed activated sludge reactors fed with abattoir wastewater was measured at different dissolved oxygen (DO) concentrations. Degradation of fat present in the influent was inhibited at DO concentrations below about 0.5 mg l−1, leading to sludges with high fat content which settled poorly due to excessive numbers of filamentous microorganisms. Fat was degraded rapidly at higher DO concentrations (up to 4.0 mg l−1) and the sludge contained few filamentous microorganisms, a low fat content and settled readily. However, effluent quality was highest at low DO concentrations due to lower levels of soluble breakdown products from the fat.When wastewater was fed intermittently at constant aeration rate, sludge with a low fat content and good settleability resulted, even though the DO concentration was about 0.2 mg l−1 for more than 30% of the time. Effluent quality was also high. Thus it is concluded that for full-scale abattoir treatment plants where wastewater flow is intermittent, DO concentration may be low during periods of high loading without adversely affecting effluent quality or sludge settleability.  相似文献   

6.
The removal and degradation characteristics of natural and synthetic estrogens by activated sludge were investigated by a series of batch experiments using the activated sludge samples of four actual wastewater treatment plants and synthetic wastewater spiked with estrogen. The rapid removal and degradation of 17β-estradiol (E2) and estrone (E1) were observed by the activated sludge samples of the oxidation ditch process which operated at higher solids retention time (SRT). On the other hand, E1 tended to remain both in the water phase and the sludge phase in the activated sludge samples of the conventional activated sludge process which operated at lower SRT. The anoxic condition was considered to be not favorable to the effective removal of estrogens as compared with the aerobic condition. The removal and degradation of EE2 showed the lag phase, which neither E2 nor E1 showed, but EE2 was finally removed and degraded completely after 24 h. The removal of estrogens in the water phase did not follow the first-order-rate reaction because a large part of the spiked estrogen was immediately removed from the water phase to the sludge phase by adsorption.  相似文献   

7.
Soluble organic materials containing nitrogen (SON) are present in effluents from activated sludge treatment of domestic wastewater, but little is known about the sources and characteristics of these materials. The objective of this research was to evaluate the characteristics of SON in untreated wastewaters and activated sludge effluents. Characterization techniques used included low microbial seed biodegradability, molecular weight distribution using gel filtration chromatography, removal by activated carbon and ion exchange, and analysis for free and combined amino acids. Activated sludge effluent SON was more refractory (40–50%; first-order decay rates for the remainder were about 0.014 day−1 than SON in untreated wastewater (18–38%; decay rates for the remainder were 0.08–0.16 day−1). SON produced biologically during treatment had decay rates (about 0.028 day−1) similar to SON in municipal activated sludge effluents, and was from 20 to 100% refractory. Less than 10% of the SON in municipal activated sludge effluent consisted of free or combined amino acids. Approximately 15–30% appeared to nucleic acid degradation products. Fifty to 60% of the SON and SCOD had apparent molecular weights of less than 1800. Apparent molecular weight distributions of treated and untreated wastewaters were similar; however, the excess SON produced during activated sludge start-up contained considerably more SON with molecular weights greater than 1800. The 165–340 molecular weight fraction had a significantly higher SON to SCOD ratio than any other fraction for all wastewaters examined. Activated carbon adsorption efficiently removed SON (72 ± 9%) and SCOD (78 ± 6%) from treated and untreated wastewaters, and from biologically produced organics. Significantly more SON was removed by cationic exchange at pH 2.0 (33–56%) than by anionic exchange at pH 9.5 (10–24%) for all wastewaters tested. Cationic exchange at pH 2.0 selectively removed more biologically produced SON relative to SCOD.  相似文献   

8.
The evolution of parathion in a river, and its degradation by the principal natural factors (hydrolysis, photochemical oxidation, biological transformations and retention by sludge and sediments) has been studied on a laboratory pilot plant. The experimental period was 55 days. On the first 34 days, the plant was fed with a solution containing 13 mg l−1 of the pesticide, and during the following 21 days, the effluent was continuously recycled.In the condition in which our experiences were conducted, the main phenomena were biological degradation of the pesticide into non poisonous amino-parathion and its adsorption on the sediments. The quantity of the parathion reduced is proportionated to the quantity of the ATP found in the activated sludge tank.This biological method being the more important, the shock effect of the parathion on a bacterial population was studied by varying the organo-phosphorous concentration (5-10-15 mg l−1) and the quantity of volatile suspended solid (1-2-3 mg l−1).The microorganisms were not affected by the poison and a reduction to aminoparathion was obtained. The quantitative results may be expressed by the following equation On the other hand a very large dose of parathion (1 mg l−1) destroyed the living organism.The presence of anionic or cationic surfactant plays no part in the toxicity of the parathion (15 mg l−1) on the biomass but the degradation of the organo-phosphorous pesticide is totally inhibited.  相似文献   

9.
Diclofenac (DCF), a common analgesic, anti-arthritic and anti-rheumatic drug, is one of the most frequently detected compounds in water. This study deals with the degradation of diclofenac in aqueous solution by ozonation. Biodegradability (BOD5/COD ratio and Zahn-Wellens test), acute ecotoxicity and inhibition of activated sludge activity were determined in ozonated and non-ozonated samples. Liquid chromatography coupled with time-of-flight mass spectrometry (LC/TOF-MS) was used to identify the intermediates formed in 1 h of ozonation. Eighteen intermediates were identified by these techniques and a tentative degradation pathway for DCF ozonation is proposed.Experimental results show that ozone is efficient at removing DCF: > 99% removal (starting from an initial concentration of 0.68 mmol L− 1) was achieved after 30 min of ozonation (corresponding to an absorbed ozone dose of 0.22 g L− 1, which is 4.58 mmol L− 1). However, only 24% of the substrate was mineralized after 1 h of ozonation. The biodegradability, respiration inhibition in activated sludge and acute toxicity tests demonstrate that ozonation promotes a more biocompatible effluent of waters containing DCF.  相似文献   

10.
The evolution of parathion in a river, and its degradation by the principal natural factors (hydrolysis, photochemical oxidation, biological transformations and retention by sludge and sediments) has been studied on a laboratory pilot plant. The experimental period was 55 days. On the first 34 days, the plant was fed with a solution containing 13 mg l?1 of the pesticide, and during the following 21 days, the effluent was continuously recycled.In the condition in which our experiences were conducted, the main phenomena were biological degradation of the pesticide into non poisonous amino-parathion and its adsorption on the sediments. The quantity of the parathion reduced is proportionated to the quantity of the ATP found in the activated sludge tank.This biological method being the more important, the shock effect of the parathion on a bacterial population was studied by varying the organo-phosphorous concentration (5-10-15 mg l?1) and the quantity of volatile suspended solid (1-2-3 mg l?1).The microorganisms were not affected by the poison and a reduction to aminoparathion was obtained. The quantitative results may be expressed by the following equation
? d(parathion)dt=K(ATP) (parathion).
On the other hand a very large dose of parathion (1 mg l?1) destroyed the living organism.The presence of anionic or cationic surfactant plays no part in the toxicity of the parathion (15 mg l?1) on the biomass but the degradation of the organo-phosphorous pesticide is totally inhibited.  相似文献   

11.
Efficient removal of phthalate esters (PE) in wastewater treatment plants (WWTP) is becoming an increasing priority in many countries. In this study, we examined the fate of dimethyl phthalate (DMP), dibutyl phthalate (DBP), butylbenzyl phthalate (BBP), and di-(2-ethylhexyl) phthalate (DEHP) in a full scale activated sludge WWTP with biological removal of nitrogen and phosphorus. The mean concentrations of DMP, DBP, BBP, and DEHP at the WWTP inlet were 1.9, 20.5, 37.9, and 71.9 μg/L, respectively. Less than 0.1%, 42%, 35%, and 96% of DMP, DBP, BBP, and DEHP was associated with suspended solids, respectively. The overall microbial degradation of DMP, DBP, BBP, and DEHP in the WWTP was estimated to be 93%, 91%, 90%, and 81%, respectively. Seven to nine percent of the incoming PE were recovered in the WWTP effluent. Factors affecting microbial degradation of DEHP in activated sludge were studied using [U-14C-ring] DEHP as tracer. First order rate coefficients for aerobic DEHP degradation were 1.0×10−2, 1.4×10−2, and 1.3×10−3 at 20, 32, and 43 °C, respectively. Aerobic degradation rates decreased dramatically under aerobic thermophilic conditions (<0.1×10−2 h−1 at 60 °C). The degradation rate under anoxic denitrifying conditions was 0.3×10−2 h−1, whereas the rate under alternating conditions (aerobic-anoxic) was 0.8×10−2 h−1. Aerobic DEHP degradation in activated sludge samples was stimulated 5-9 times by addition of a phthalate degrading bacterium. The phthalate degrading bacterium was isolated from activated sludge, and maintained a capacity for DEHP degradation while growing on vegetable oil. Collectively, the results of the study identified several controls of microbial PE degradation in activated sludge. These controls may be considered to enhance PE degradation in activated sludge WWTP with biological removal of nitrogen and phosphorus.  相似文献   

12.
Zhao L  Gu WM  He PJ  Shao LM 《Water research》2011,45(6):2322-2330
Straw and sawdust are commonly used bulking agents in sludge composting or bio-drying. It is important to determine if they contribute to the biodegradable volatile solids pool. A sludge bio-drying process was performed in this study using straw, sawdust and their combination as the bulking agents. The results revealed that straw has substantial biodegradation potential in the aerobic process and sawdust has poor capacity to be degraded. The temperature profile and bio-drying efficiency were highest in the trial that straw was added, as indicated by a moisture removal ratio and VS loss ratio of 62.3 and 31.0%, respectively. In separate aerobic incubation tests, straw obtained the highest oxygen uptake rate (OUR) of 2.14 and 4.75 mg O2 g−1VS h−1 at 35 °C and 50 °C, respectively, while the highest OUR values of sludge were 12.1 and 5.68 mg O2 g−1VS h−1 at 35 °C and 50 °C and those of sawdust were 0.286 and 0.332 mg O2 g−1VS h−1, respectively. The distribution of biochemical fractions revealed that soluble fractions in hot water and hot neutral detergent were the main substrates directly attacked by microorganisms, which accounted for the initial OUR peak. The cellulose-like fraction in straw was transformed to soluble fractions, resulting in an increased duration of aerobic respiration. Based on the potential VS degradation rate, no bio-generated heat was contributed by sawdust, while that contribution by straw was about 41.7% and the ratio of sludge/straw was 5:1 (w/w, wet basis).  相似文献   

13.
In view of the merits of bioleaching and surfactant for sludge treatment, the possibility of surfactant with bioleaching pretreatment applied to improve sludge dewaterability was investigated in this work. The results showed that cetyl trimethyl ammonium chloride (CTAC) with bioleaching pretreatment was highly efficient in dewatering sludge. The optimal CTAC dosage and bioleaching pH for this combination were 120 mg/g (dry solids) and 3.55, respectively, under which the water content of filtrated cake was 68.94% and the specific resistance to filtration was 0.12 × 1013 m/kg with a reduction of 94.92%. Although CTAC and bioleaching both had positive effects on sludge dewatering, their combination was more efficient. The significant enhancement of sludge dewaterability was mainly contributed from the breakage and charge neutralization of sludge flocs, and the release of extracellular polymeric substances (EPS). In addition, the positive correlation between supernatant EPS concentration and sludge dewaterability was observed under experimental conditions.  相似文献   

14.
It was investigated whether and to what extent the results obtained by various methods of determining bacterial toxicity in waste water could be applied to conditions prevailing in activated sludge plants or in receiving water.3.5-Dichlorphenol (DCP) was studied as an example of a persistent chemical which constitutes a pollution risk to water. The bacterial toxicity limits determined by five different methods—respiration after a 20-h consumption period, consumption rate after 2-h incubation, dehydrogenase activity determined with TTC. gas formation in a fermentation tube and inhibition of the cell division of Pseudomonas—all agreed with the toxicity limit of 5 mg DCP I−1 found in degradation tests in laboratory activated sludge equipment. No safety margin need be taken into account when the test results are applied to biological purification plants.In the activated sludge plants the degradation of the industrial waste water was markedly impaired only when the DCP concentration was increased to 25 mg I−1. This varied in degree according to the sludge load at the beginning of the trial.Shock loads of DCP did not cause the expected fall-off in degradation but only a moderate fluctuation in its rate. The decline in degradation following continuous and also discontinuous addition of DCP was largely or completely overcome within a few weeks by the bacteria becoming adapted to DCP.In samples of river water the toxicity limit as determined by the tests was in the region of 2 mg I−1.  相似文献   

15.
W.T. Shebs  L.S. Smith   《Water research》1983,17(11):1691-1695
Primary biodegradation of a NEODOL® ethoxylate labeled with tritium primarily in the α and γ positions of the alkyl chain and uniformly with 14C in the polyoxyethylene chain resulted in a very rapid release of tritiated water (HTO) by cleavage of the surfactant at the hydrophobe-hydrophile junction. This reaction was used to investigate the conditions necessary to preserve samples of biotreater clarifier effluent and mixed liquor suspended solids (MLSS). Treatment of the sample with granular activated carbon, followed by filtration, readily isolated the tritiated water. The amount of HTO formed indicated the extent of continued degradation of the surfactant. It was concluded that refrigeration alone was not adequate to prevent primary degradation of the surfactant. Refrigeration in combination with either formalin or 200 ppm HgCl2 prevented short-term degradation of the surfactant. Formalin, but not HgCl2, was found adequate for preventing degradation in samples of mixed liquor suspended solids preserved in excess of 14 days.  相似文献   

16.
The purpose of this work was to determine the degradation products and pathway of chlorfenvinphos (CFVP) in water treated by photo-Fenton driven by solar irradiation, as well as to develop an analytical procedure for the degradation experiments. Degradation products and pathway were determined in a laboratory experimental setup. Routine water sample analysis was done by standard laboratory wet chemistry procedures and the use of laboratory equipment such as HPLC-UV and ionic chromatography (IC). Solid-phase extraction (SPE) was used to extract analytes from an aqueous matrix, and GC-MS was used to identify intermediate degradation products. The use of an HPLC-TOF-MS provided more results on degradation products and more insight was gained into how degradation takes place. In all experiments, strong mineralisation and degradation of CFVP was observed. CFVP and its degradation products, like 2,4-dichlorophenol, 2,4-dichlorobenzoic acid and triethylphosphate were decomposed into organic substances like acetate, formate, maleate, and inorganic ions like chloride and phosphate, within the detection limits (12.5 μg/L for CFVP in the GC-MS and 40 μg/L in HPLC-UV) of the equipment used. In fact, Cl emerges in nearly stoichiometric concentrations and PO43 is precipitated as FePO4. The remarkably complete absence of chlorinated aliphatic substances and chlorinated acids leads to the conclusion that chlorine is removed very quickly, and that residual DOC does not correspond to any chlorinated compound.  相似文献   

17.
D. Liu 《Water research》1980,14(10):1467-1475
Various mixtures of commercial PCBs (Aroclors) were rapidly biodegraded by Pseudomonas sp. 7509. The rate of biodegradation could be greatly enhanced by growing the cells in a stable PCB-ligninsulfonate emulsion. Microscopic examinations and growth studies suggested that biodegradation mainly took place at the PCB-water interface; the use of ligninsulfonate in the growth medium apparently allowed the cells to overcome the substrate limiting factor of surface area which, otherwise, might govern the subsequent rate of PCB degradation. Sodium ligninsulfonate was not degraded significantly in the PCB biodegradation process. Analyses of the culture broth, by gas chromatography, revealed that P. sp. 7509 could degrade 300 ppm of Aroclor 1254 after 18 days incubation. This degradation rate could be further enhanced by the addition of a small amount of Aroclor 1221 to the growth medium. A kinetic study, using resting cells, indicated that Aroclor 1221 was degraded much faster (980 μg h−1 mg cell dry wt−1) than the higher chlorinated Aroclor 1254 (43 μg h−1 mg cell dry wt−1). This finding was supported by manometric data which showed that regardless of the type of PCBs mixture used to grow the cells, the lower chlorinated PCBs were always oxidized faster than the higher chlorinated PCBs. The level of chlorination in a PCBs mixture therefore appears to be one of the major factors in determining its relative persistence to biodegradation.  相似文献   

18.
Sludge predation can be an effective solution to reduce sludge production at a wastewater treatment plant. Oligochaete worms are the natural consumers of biomass in benthic layers in ecosystems. In this study the results of secondary sludge degradation by the aquatic Oligochaete worm Aulophorus furcatus in a 125 m3 reactor and further sludge conversion in an anaerobic tank are presented. The system was operated over a period of 4 years at WWTP Wolvega, the Netherlands and was fed with secondary sludge from a low loaded activated sludge process. It was possible to maintain a stable and active population of the aquatic worm species A. furcatus during the full period. Under optimal conditions a sludge conversion of 150-200 kg TSS/d or 1.2-1.6 kg TSS/m3/d was established in the worm reactor. The worms grew as a biofilm on carrier material in the reactor. The surface specific conversion rate reached 140-180 g TSS/m2d and the worm biomass specific conversion rate was 0.5-1 g TSS sludge/g dry weight worms per day. The sludge reduction under optimal conditions in the worm reactor was 30-40%. The degradation by worms was an order of magnitude larger than the endogenous conversion rate of the secondary sludge. Effluent sludge from the worm reactor was stored in an anaerobic tank where methanogenic processes became apparent. It appeared that besides reducing the sludge amount, the worms’ activity increased anaerobic digestibility, allowing for future optimisation of the total system by maximising sludge reduction and methane formation. In the whole system it was possible to reduce the amount of sludge by at least 65% on TSS basis. This is a much better total conversion than reported for anaerobic biodegradability of secondary sludge of 20-30% efficiency in terms of TSS reduction.  相似文献   

19.
The impact of LCFA adsorption on the methanogenic activity was evaluated in batch assays for two anaerobic granular sludges in the presence and absence of bentonite as synthetic adsorbent. A clear inhibitory effect at an oleate (C18:1) concentration of 0.5 gC18:1 L−1 was observed for both sludges. Palmitate (C16:0) was confirmed to be the main intermediate of C18:1 degradation in not adapted sludge and its accumulation was further evidenced by fluorescence staining and microscopy techniques. LCFA inhibition could be decreased by the addition of bentonite, reducing the lag-phase and accelerating the kinetics of LCFA degradation, concluding in the importance of the adsorptive nature of the LCFA inhibitory process. Granule morphology and molecular profiling of predominant microorganisms revealed that biomass adaptation to LCFA could modify the intermediates accumulation profiles and process rates.  相似文献   

20.
Complete degradation of a pesticide mixture by a combination of a photo-Fenton pretreatment and an activated-sludge batch reactor is demonstrated. Four commercial pesticides, Laition, Metasystox, Sevnol and Ultracid were chosen for this experiment. The active ingredients are, respectively, dimethoate, oxydemeton-methyl, carbaryl and methidathion. The original pesticide concentration was 200 mg L−1. Biotreatment began after 31% photocatalytic mineralization, which after 5 h in a 6-L stirred batch-mode tank reactor with non-acclimated activated sludge, leaves the photo-Fenton effluent completely degraded. This biotreatment time is shorter than commonly found in municipal wastewater treatment plants (∼8-10 h). Therefore, the combined process is effective for rapid pesticide degradation in wastewater with complete removal of parent compounds and the associated DOC concentration. Nonetheless, assessment of this technology should take into account higher pesticide concentrations and how this factor affects both the photocatalytic and the biological oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号