首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrodynamics of solids (FCC) recycle in a loop-seal (0.08 m) at the bottom of the downcomer (0.08 m-I.D.x4.0 m-high) in a circulating fluidized bed (0.1 m-I.D.x 5.3 m-high) have been determined. Solid flow rate through the loop-seal increases linearly with increasing aeration rate. At the same aeration rate, the maximum solid flow rate can be obtained at a loop-seal height-to-diameter ratio of 2.5. The effects of solid inventory, solid circulation rate and gas velocity on pressure balance around the CFB have been determined. At a given gas velocity and solid circulation rate, pressure drops across the downcomer and loop-seal increase linearly with increasing solids inventory in the bed. At a constant solid inventory, pressure drops across the riser and the downcomer increase with increasing solid circulation rate but decrease with increasing gas velocity in the riser. The obtained solid flow rate has been correlated with pressure drop across the loop-seal.  相似文献   

2.
The slug characteristics (frequency, rising velocity and length) have been determined by analyzing pressure fluctuations in a fluidized bed (0.38 m-I.D.x4.4m-high) of linear-low-density-polyethylene (LLDPE) and polypropylene (PP) particles. The slug characteristics of LLDPE and PP particles have been determined as a function of gas velocity (0.6-1.2 m/s) and the axial height (0.65–1.15 m) from the distributor. The rising velocity and vertical length of slug increase with increasing superficial gas velocity and the axial height of the bed. The slug shape of LLDPE particles is found to be the square-nose whereas that of PP particles is the round-nose. The slug frequency and its length have been correlated in terms of the excess fluidizing velocity, column diameter and bed height based on the data from the present and previous studies.  相似文献   

3.
The aim of this work was to study the mechanism of solid circulation in a Circulating Fluidized Bed pilot as a function of secondary air flow rate A rectangular column of 7 m height equipped with a U type siphon was used for this purpose The results obtained showed that the solid circulating phenomenon depends on different limiting steps like feeding step (dense bed), siphon circulating capacity and suspension saturation capacity.  相似文献   

4.
Effects of superficial gas velocities to a draft tube, to an annulus section and particle size on the solid circulation rate (G,) have been determined in an internally circulating fluidized bed (0.28 m I.D. × 2m high) with an orifice type draft tube. The solid circulation rate from the draft tube to an annulus section increases with increasing gas velocities to the draft tube(U d ) and annulus section (Ua) and consequent increase in pressure drop across the orifice (ΔPor). However, the values ofG s decrease by 7–21% with increasing particle size from 86 to 288 μm. The pressure drop across the orifice increases with increasingU d andU a . However, ΔPor decreases by 5–23% with increasing particle size. To predictG s in an internally circulating fluidized bed, a correlation is proposed as a function of ΔPor This paper is dedicated to Professor Dong Sup Doh on the occasion of his retirement Korea University.  相似文献   

5.
A modified impact probe for continuous measurement of solids circulation rate in a circulating fluidized bed has been developed based on a principle similar to a momentum probe. The response curves of solid flow from the probe have been characterized and calibrated in a test column (0.05 m-I.D.x0.80 m-high). The probe was validated in situ in the downcomer of a circulating fluidized bed (0.10 m-I.D.x4.80 m-high). The solid circulation rates obtained by the modified impact probe well agree with the measured solids circulation rate by the descent time method. Presented at the Int’/Sym. on Int’l Symp. on Chem. Eng. (Cheju, Feb. 8–10, 2001), dedicated to Prof. H. S. Chun on the occasion of his retirement from Korea University.  相似文献   

6.
Transient behavior of a bed collapsing after cut-off of gas supply into a three-phase fluidized bed was determined in a 0.21 m-diameter half-tube acrylic column having a test section 1.8 m high. The transient behavior of the bed collapse after cut-off of the gas supply to the beds was monitored by a video camera (30 frames/s). A theory was developed to account for the dynamic behavior of the bed collapse after the gas supply shut-off to three-phase fluidized beds. The bubble drift velocity was theoretically calculated by gas and liquid phase holdups at steady state condition. At a liquid velocity of 0.103 m/s and gas velocity of 0–0.023 m/s, bubble size was uniform in the dispersed bubble flow regime. However, as the gas velocity increased above 0.023 m/s, the discrete or coalesced bubble flow regime could be observed. The agreement between the predicted and experimental values is acceptable in the dispersed bubble flow regime, but the agreement becomes poorer with increasing gas velocity.  相似文献   

7.
CFD modeling of air and fluid catalytic cracking (FCC) particles in the riser of a high density circulating fluidized bed (HDCFB) has been performed. The implementation of correct inlet conditions was found to be critical for the successful simulation of the hydrodynamics. The simulated profiles of gas and solid velocity and volume fraction were overall in good agreement with experimental data reported in the literature. However, due to the difficulties in accurate modeling of the solid segregation toward the wall, the solid volume fraction was under predicted near the walls. The effect of modeling parameters including different drag models, wall restitution coefficient values, and solid slip conditions have been evaluated. While the wall restitution coefficient did not exhibit a significant effect on the riser hydrodynamics, the appropriate slip condition aided in predicting the solid segregation toward the wall.  相似文献   

8.
李荫堂  李军 《化工机械》1995,22(3):143-147
本文提出了循环流化床锅炉炉膛的轴向压力及固体浓度分布的计算式。当给出表观气、循环固体流率以及颗粒性质时,可准确地预测炉膛压降与轴向固体浓度分布,为炉膛设计提供了计算依据。  相似文献   

9.
The effects of orifice diameter in the draft tube, particle size, gas velocities and bed height on the circulation rate of solids and gas bypassing between the draft tube and annulus have been determined in an internally circulating fluidized bed (i.d., 0.3 m ; height, 2.5 m) with an orifice-type draft tube. A conical shape gas separator has been employed above the draft tube to facilitate the separation of gases from the two beds. The circulation rate of solids and the quantity of gas bypass from the annulus to draft tube show their minimums when the static bed height is around the bottom of the separator. The circulation rate of solids increases with an increase in orifice diameter in the draft tube. At fixed aeration to the annulus, gas bypassing from the draft tube to annulus sections decreases, whereas reverse gas bypassing from the annulus to the draft tube increases with increasing the inlet gas velocity to the draft tube. The obtained solids circulation rate has been correlated by a relationship developed for the cocurrent flow of gas and solid through the orifice.  相似文献   

10.
Two-interconnected fluidized bed systems are widely used in various processes such as Fisher-Tropsch, hot gas desulfurization, CO2 capture-regeneration with dry sorbent, chemical-looping combustion, sorption-enhanced steam methane reforming, chemical-looping hydrogen generation system, and so on. However, conventional two-interconnected fluidized bed systems are very complex, large, and difficult to operate because most of these systems require a riser and/or pneumatic transport line for solid conveying and loopseals or seal-pots for gas sealing, recirculation of solids to the riser, and maintaining of pressure balance. To solve these problems, a novel two-interconnected fluidized bed system has been developed. This system has two bubbling beds, solid injection nozzles, solid conveying lines, and downcomers. In this study, the effects of operating variables on solid circulation rate and gas leakage between two beds have been investigated in a cold mode two-interconnected fluidized bed system. The solid circulation rate increased as the hole diameter on the injection nozzle, the diameter of the injection nozzle, the solid height above the holes, and the number of holes on the injection nozzle increased. The gas leakage between the beds was negligible. Moreover, long-term operation of continuous solid circulation up to 60 hours was performed to check the feasibility of stable operation. The pressure drop profiles in the system loop were maintained steadily and solid circulation was smooth and stable.  相似文献   

11.
The coating efficiency of fluidizing small particles and their agglomeration were investigated to evaluate the possibility of powder coating by the use of a circulating fluidized bed. Glass beads, whose mean diameter was 43 Μm, and silica powder of 1 Μm were used as a core and a coating material. Polyvinyl alcohol was used as a binder and its solution was supplied together with silica powder from a spray nozzle equipped in the circulating fluidized bed. Glass beads of 43 Μm, which had been impossible to coat in a conventional fluidized bed coater, were successfully coated with silica powder in a circulating fluidized bed, and agglomeration among core particles was prevented. From this result, it was confirmed that a circulating fluidized bed performs excellently as a coater, especially for fine core particles, so a circulating fluidized bed coater has bright prospects for particle coating.  相似文献   

12.
In this research, co-combustion of coal and rice husk was studied in a circulating fluidized bed combustor (CFBC). The effects of mixed fuel ratios, primary air and secondary air flow rates on temperature and gas concentration profiles along riser (0.1 m inside diameter and 3.0 m height) were studied. The average particle size of coal from Maetah used in this work was 1,128 mm and bed material was sand. The range of primary air flow rates was 480–920 l/min corresponding to U g of 1.0–2.0 m/s for coal feed rate at 5.8 kg/h. The recirculation rate through L-valve was 100 kg/hr. It was found that the temperatures along the riser were rather steady at about 800–1,000 degrees Celsius. The introduction of secondary air improved combustion and temperature gradient at the bottom of the riser, particularly at a primary air flow rate below 1.5 m/s. Blending of coal with biomass, rice husk, did improve the combustion efficiency of coal itself even at low concentration of rice husk of 3.5 wt%. In addition, the presence of rice husk in the feed stocks reduced the emission of both NO x and SO2.  相似文献   

13.
The gas backmixing characteristics in a circulating fluidized bed (0.1 m-IDx5.3-m high) have been determined. The gas backmixing coefficient (Dba) from the axial dispersion model in a low velocity fluidization region increases with increasing gas velocity. The effect of gas velocity onD ba in the bubbling bed is more pronounced compared to that in the Circulating Fluidized Bed (CFB). In the dense region of a CFB, the two-phase model is proposed to calculate Dbc from the two-phase model and mass transfer coefficient (k) between the crowd phase and dispersed phase. The gas backmixing coefficient and the mass transfer coefficient between the two phases increase with increasing the ratio of average particle to gas velocities (Up/Ug).  相似文献   

14.
The bed-to-wall heat transfer coefficients were measured in a circulating fluidized bed of FCC particles (dp = 65 μm). The effects of gas velocity (1.0–4.0 m/s), solid circulation rate (10–50 kg/m2s) and particle suspension density (15–100 kg/m3) on the bed-to-wall heat transfer coefficient have been determined in a circulating fluidized bed (0.1 m-ID x 5.3 rn-high). The heat transfer coefficient strongly depends on particle suspension density, solid circulation rate, and gas velocity. The axial variation of heat transfer coefficients is a strong function of the axial solid holdup profile in the riser. The obtained heat transfer coefficient in terms of Nusselt number has been correlated with the pertinent dimensionless groups  相似文献   

15.
An axial dispersion of gas in a circulating fluidized bed was investigated in a fluidized bed of 4.0 cm I.D. and 279 cm in height. The axial dispersion coefficient of gas was determined by the stimulus-response method of trace gas of CO2. The employed particles were 0.069 mm and 0.147 mm silica-sand. The results showed that axial dispersion coefficients were increased with gas velocity and solid circulation rates as well as suspension density. The experimentally determined axial dispersion coefficients in this study were in the range of 1.0-3.5 m2/s.  相似文献   

16.
Characteristics of temperature fluctuations and heat transfer coefficient have been investigated in the riser of a circulating fluidized bed (0.102 m ID and 4.0 m in height). Effects of gas velocity and solid circulation rate on the temperature fluctuations, suspension density and heat transfer coefficient between the immersed heater and the bed have been considered in the riser. To analyze the characteristics of temperature fluctuations at the wall of the riser, the phase space portrait and Kolmogorov entropy of the fluctuations have been obtained, and the relation between the temperature fluctuations and the heat transfer coefficient has been examined. It has been found that the heat transfer system becomes more complicated and irregular with decreasing gas velocity and increasing solid circulation rate or suspension density in the riser. The heat transfer coefficient and Kolmogorov entropy of the temperature fluctuations have decreased with increasing the superficial gas velocity, while they have increased with increasing the solid circulation rate or suspension density in the bed. The heat transfer coefficient has been well correlated in terms of the Kolmogorov entropy, suspension density as well as operating variables in the riser. This paper is dedicated to Professor Dong Sup Doh on the occasion of his retirement from Korea University.  相似文献   

17.
Circulating fluidized beds (CFBs) are used widely in the chemical industry. Knowing or estimating the bed height in the standpipe and the solids circulation rate are essential for effective control of the system. This paper incorporates a 2-region model to calculate the bed height in the standpipe with a Kalman filter algorithm to estimate the solids circulation rate (SCR). Simulations of both the standpipe bed height and SCR were compared with experimental data and shown to give good agreement.

In addition, a neural network method was applied to model the entire cold flow CFB system and measured data sets were used to train the neurons of the network. Finally, a linear controller was applied to control both the bed height and solids circulation rate to desired set points. Simulations were performed for both positive and negative step inputs for both variables and satisfactory control was demonstrated using this controller in combination with the neutral network and Kalman estimator.  相似文献   


18.
Very little information on the heat transfer to the ceiling of a circulating fluidized bed (CFB) boiler is available in the published literature though it constitutes a significant part of the furnace heat absorption. So, to explore this less-known heat transfer process a series of experiments were conducted at four different superficial gas velocities and three external solids circulation rates in a CFB pilot plant with a riser having a height of 5 m and a cross section of . The experimental results suggest that both solids circulation rates and superficial gas velocities had a significant influence on the local heat transfer to the ceiling close to the riser exit to the gas solids separator. However, on the ceiling, opposite of the exit, solids circulation rates and superficial gas velocities had only a minor influence on the local heat transfer coefficients.  相似文献   

19.
Characteristics of particle flow in the standpipes of a 10 cm I.D.×120 cm high fluidized bed were investigated. The standpipes used in this experiment were vertical overflow and vertical underflow standpipes. Sand particles and polyethylene powders were employed as the bed materials. The effects of standpipe diameter, gas velocity and particle properties on the solid flow rate were determined. The experimental results showed that the flow behaviors of solids through the overflow and underflow standpipes are different with variations of operating conditions. For both standpipes, the mass flow rate of solids was strongly dependent on the standpipe diameter. For the overflow standpipe, the increase of gas velocity increased the solids flow rate. But for the underflow standpipe it decreased the solid flow rate. From the measured pressure drops, solid fractions in the standpipes were determined by the momentum balance. The obtained experimental data of solids mass flow rate were well correlated with the pertinent dimensionless groups for underflow as well as overflow standpipes.  相似文献   

20.
The characteristics of pressure drop fluctuation in a 5.0 cm I.D.×250cm high circulating fluidized bed with fine polymer particles of PE and PVC were investigated. The measurements of time series of the pressure drop were carried out along the three different axial locations. To determine the effects of coarse particles and relative humidity of air on the flow behavior of polymer powders-air suspension in the riser, we employed deterministic chaos analysis of the Hurst exponent, correlation dimension and phase space trajectories as well as classical methods such as standard deviation, probability density function of pressure drop fluctuation. From a statistical and chaos analysis of pressure fluctuations, the upper dilute region was found to be much more homogenous flow compared to that in the bottom dense region at the same operating conditions. It was also found that the addition of coarse particles and higher humidity of air reduced the pressure fluctuations, thus enhancing flow stability in the riser. The analysis of pressure fluctuations by statistical and chaos theory gave qualitative and the quantitative information of flow behavior in the circulating fluidized bed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号