首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The assessment of the cup of the optic disc depends, among other criteria, on the disc area. A small cup in a small optic disc can indicate an advanced glaucomatous lesion, while on the other hand a large cup in a large optic disc can be normal. Therefore, a cumulative normalised rim/disc area ratio curve could help to distinguish between glaucomatous and normal optic cups. The aim of our study was to calculate normalised rim/disc area ratio curve. METHODS: Heidelberg Retina Tomograph examinations of the optic nerve head of 100 randomly selected eyes of 100 normal subjects were evaluated. We calculated the disc area-adjusted normalised rim/disc area ratio in sectors of 10 degrees. The 95th, 90th and 50th percentiles of each of the 36 sectors were displayed in descending order. RESULTS: In relation to the normal percentile curves, it is possible to display an individual normalised rim/disc area ratio curve. We obtained such curves for a normal optic disc, optic nerve heads with moderate and advanced lesions and a small optic disc with glaucomatous damage. CONCLUSION: We present a new display mode for the results of Heidelberg Retina Tomograph optic nerve head examination, which may be helpful for easy and reliable assessment of the local, diffuse and combined components of glaucomatous optic nerve head damage depending on optic disc size.  相似文献   

2.
AIMS: Progressive loss of neuroretinal rim tissue is known to occur early in glaucoma and measurement of the neuroretinal rim area is possible by magnification corrected analysis of optic disc photographs (planimetry). This study was performed to determine whether the facility to distinguish between glaucomatous and normal optic discs could be improved upon by: (a) taking into account the known relation between optic disc size and neuroretinal rim area, and (b) measuring rim area in a number of segments, in order to detect focal changes. METHODS: Planimetric examination of the optic disc photographs of 88 control subjects and 51 patients with early visual field defects was performed. In the control group, multiple linear regression analysis was performed between neuroretinal rim area and optic disc area, age, sex, eye side, refraction, and keratometry. This was repeated for the whole disc and for each of twelve 30 degree segments. Normal ranges were defined by the 98% prediction intervals of the regression analysis and the sensitivity and specificity for correct identification of optic discs in the two groups determined. RESULTS: Multiple linear regression demonstrated significant associations between the neuroretinal rim area and optic disc area and age in normal subjects. Sensitivity and specificity for glaucoma diagnosis, using the cut off derived from the 98% prediction intervals, was 37.7% and 98.9% respectively when total neuroretinal rim area alone was considered, and 88.7% and 94.3% respectively when the 30 degree segments were included. The most frequent pattern of neuroretinal rim loss was diffuse, followed by thinning in more than one sector and then by thinning in the inferotemporal sector alone. CONCLUSIONS: This method of optic disc analysis enables the examiner to identify glaucomatous optic discs at the stage of early perimetric loss with a high degree of precision. Optic disc photography is simple, and fundus cameras are widely available. This method for glaucoma case identification may therefore be suitable for the primary care setting as well as hospital practice.  相似文献   

3.
AIM: In an attempt to use the quantitative optic disc measurements of the Glaucoma-Scope (OIS Sacramento, CA, USA) to distinguish glaucomatous from normal optic discs, a new variable was investigated, the mean disc corrected for the disc size by dividing by the disc area: MP/D. METHODS: Glaucoma-Scope disc evaluation was performed on 81 eyes of 51 patients split into the following groups based on Humphrey 24-2 visual field and clinical criteria of glaucoma: chronic glaucoma n = 27 (including only early, n = 17, and low tension glaucoma, n = 10), ocular hypertension n = 24, pseudoglaucomatous large discs, n = 12, and normal eyes, n = 18. Classic optic disc variables (the vertical and horizontal c/d ratios, and the c/d area) were compared with the new MP/D index calculating receiver operating characteristic curves. RESULTS: The MP/D ratio was able to identify the glaucomatous eyes more easily than other ratios. Areas under the curves were: 0.91 (MP/D); 0.87 (c/d area); 0.85 (c/d vertical); and 0.80 (c/d horizontal). The MP/D index was also correlated with the mean deviation (r = 0.466; p = 0.001). CONCLUSION: MP/D may prove useful in detecting glaucomatous optic nerve damage and could be an interesting screening tool for primary open angle glaucoma.  相似文献   

4.
BACKGROUND: To compare neuroretinal rim area measurements by confocal scanning laser tomography and planimetric evaluation of optic disc photographs. METHODS: For 221 patients with primary and secondary open angle glaucoma, 72 subjects with ocular hypertension, and 139 normal subjects, the optic disc was morphometrically analysed by the confocal scanning laser tomograph HRT (Heidelberg retina tomograph) and by planimetric evaluation of stereo colour optic disc photographs. RESULTS: Absolute rim area and rim to disc area were significantly (p < 0.0001) larger with the HRT than with planimetric evaluation of photographs. Differences between the two methods were significantly (p < 0.01) larger in normal eyes with small cupping than in normal eyes with large cupping, and differences were significantly (p < 0.01) larger in glaucomatous eyes with marked nerve damage than in glaucomatous eyes with moderate nerve damage. Coefficients of correlations between rim measurements of both methods were R2 = 0.60 for rim to disc area and R2 = 0.33 for absolute rim area. Planimetric measurements of rim area correlated significantly (p < 0.05) better than HRT determinations of rim area with mean visual field defect and retinal nerve fibre layer visibility. CONCLUSIONS: Measurements of absolute rim area and rim to disc area are significantly larger with the HRT compared with planimetry of disc photographs. Differences between both methods depend on disc area, cup size and glaucoma stage. The reason may be that the HRT measures the retinal vessel trunk as part of the neuroretinal rim. The differences between both methods, which should be taken into account if disc measurements performed by both methods are compared with each other, may not influence the main advantage of the HRT--that is, morphological follow up examination of patients with glaucoma.  相似文献   

5.
PURPOSE: Parapapillary chorioretinal atrophy, neuroretinal rim loss, and a decrease of retinal vessel diameter have been described to occur in glaucomatous eyes. This study was conducted to evaluate the frequency and degree of these signs in nonarteritic anterior ischemic optic neuropathy (AION). METHODS: We evaluated morphometrically and compared stereo color optic disc photographs of 17 patients after AION, 184 patients with primary open-angle glaucoma, and 98 normal subjects. RESULTS: The optic disc area and retinal vessel diameter were significantly smaller and the visibility of the retinal nerve fiber bundles was significantly reduced in patients after nonarteritic AION compared with that of the normal subjects. The optic disc shape, area, and form of zones alpha and beta of the parapapillary chorioretinal atrophy and the size and form of the neuroretinal rim did not differ significantly between these two groups. In the group of eyes with glaucoma, the neuroretinal rim was significantly smaller and the parapapillary chorioretinal atrophy was significantly larger than in the group of eyes with AION. Visibility of the retinal nerve fiber bundles and retinal vessel caliber did not differ statistically between the eyes with AION and those with glaucoma. CONCLUSIONS: These results indicate that the parapapillary chorioretinal atrophy is not larger in eyes after nonarteritic AION compared with normal eyes. They show that the area and shape of the neuroretinal rim, as determined planimetrically, may not markedly change after nonarteritic AION. They confirm previous reports on a small optic disc size as a risk factor for nonarteritic AION. They agree with findings of a reduced retinal vessel caliber in eyes with optic nerve damage, independently of the cause.  相似文献   

6.
AIMS: To evaluate the inferior to temporal neuroretinal rim width ratio and superior to temporal rim width ratio as measures of rim shape for diagnosis of glaucoma. METHODS: Colour stereo optic disc photographs of 527 normal subjects, 100 ocular hypertensive individuals with normal visual fields, and 202 open angle glaucoma patients with a mean perimetric defect of less than 10 dB were morphometrically evaluated. Eyes with an optic cup area of < 0.2 mm2 were excluded. RESULTS: In the normal subjects, inferior to temporal rim width ratio (1.67 (SD 0.53)) was significantly (p < 0.0001) higher than superior to temporal rim width ratio (1.56 (0.49)). Both ratios were significantly (p < 0.0001) higher the more vertically the optic disc was configured. In the normal eyes, both ratios were statistically independent of disc size, rim area, refractive error, age, and sex. With the differences being more marked for the inferior to temporal ratio than for the superior to temporal ratio, both rim width ratios were significantly (p < 0.005) lower in the ocular hypertensive group than in the normal group. Despite the high significance of the differences, diagnostic power of the inferior ratio and the superior ratio was 59% and 58%, respectively, indicating a marked overlap between the groups. CONCLUSIONS: Abnormally low inferior to temporal and superior to temporal rim width ratios can indicate glaucomatous optic nerve damage in some ocular hypertensive eyes. Being independent of optic disc size and ocular magnification, the rim width ratios may be taken as one among other variables for the ophthalmoscopic optic disc evaluation, taking into account, however, a pronounced overlap between normal eyes and ocular hypertensive eyes.  相似文献   

7.
PURPOSE: This study aimed to define the confocal laser scanning ophthalmoscope (Heidelberg Retina Tomograph [HRT]) parameters that best separate patients with early glaucoma from normal subjects. STUDY DESIGN: A cross-sectional study. PARTICIPANTS: A total of 80 normal subjects and 51 patients with early glaucoma participated (average visual field mean deviation = -3.6 dB). INTERVENTION: Imaging of the optic nerve head with the HRT and analysis using software version 1.11 were performed. MAIN OUTCOME MEASURES: The relation between neuroretinal rim area and optic disc area, and cup-disc area ratio and optic disc area, was defined by linear regression of data derived from the normal subjects. The normal ranges for these two parameters were defined by the 99% prediction intervals of the linear regression between the parameter and optic disc area, for the whole disc, and for each of the predefined segments. Normal subjects and patients were labeled as abnormal if the parameter for either the whole disc or any of the predefined segments was outside the normal range. The sensitivity and specificity values of the method were calculated. RESULTS: The highest specificity (96.3%) and sensitivity (84.3%) values to separate normal subjects and those patients with early glaucoma were obtained using the 99% prediction interval from the linear regression between the optic disc area and the log of the neuroretinal rim area. Similar specificity (97.5%) and lower sensitivity (74.5%) values were obtained with the 99% prediction interval derived from regression between the disc area and cup-disc area ratios. Poor separation between groups was obtained with the other parameters. CONCLUSIONS: The HRT, using the technique of linear regression to account for the relationship between optic disc size and rim area or cup-disc area ratio, provides good separation between control subjects and patients with early glaucoma in this population.  相似文献   

8.
OBJECTIVE: To search a sensitive parameter for the early diagnosis of primary open angle glaucoma (POAG). METHOD: A system of computerized image analysis was used to acquire images of the optic nerve head of patients with POAG, suspect glaucoma (SG) and of normal persons. Each of these groups contained 31 eyes of 31 cases. The mean relative depths of disc rim and cup at different areas in the optic nerve head were measured. All these patients were followed up for four to six months, and the changes of the mean depths of every sector were compared between each pair of the three groups with statistic analysis. RESULTS: The mean depth of the neural rim and cup of each sector and that of total rim and total cup of POAG and SG patients were all deeper than that of normal controls. The mean depths of neural rim of the superior sector, inferior sector and the total rim area of POAG were deeper than that of SG patients. Compared to their first measurements, the changes of mean depths of neural rim of superior sector and total neural rim area of POAG patients were more prominent than that of normal controls and SG. We also compared the relative depth of the total rim area in the different areas in the optic nerve head with other two dimensional optic disc parameters such as cup/disc ratio, etc. CONCLUSION: Our study suggests that three-dimensional stereoscopic measurement of the surface of optic nerve head and follow-up be of paramount importance in the early diagnosis of POAG patients.  相似文献   

9.
OBJECTIVE: To determine whether foveal function distal to the ganglion cell layer is an independent predictor of central visual field function in glaucoma. SETTING: University affiliated hospital and private practice. PARTICIPANTS: Twenty-seven eyes (27 patients) with normal-pressure glaucoma, 10 eyes (10 patients) with primary open-angle glaucoma, and 47 eyes of 47 matched normal volunteers. INTERVENTION AND MAIN OUTCOME MEASURES: Foveal cone electroretinogram (ERG) amplitude, relative optic cup to disc area and their relations to Humphrey full-threshold 30-2 visual field central 4-point mean total deviation (C4MTD) and pattern deviation (C4MPD). RESULTS: Foveal cone ERG amplitude was subnormal in 14 (37.8%) of the 37 glaucomatous eyes and lower in the glaucoma group compared with normal eyes (P<.01). The C4MTD and C4MPD were lower in glaucomatous eyes with subnormal amplitudes compared with those with normal amplitudes (P<.01 and P<.05, respectively). Amplitude was directly correlated with C4MTD (P<.01) and C4MPD (P<.01). Relative optic cup to disc area was inversely correlated with C4MTD (P<.001) and C4MPD (P<.001). Partial correlation analysis revealed that amplitude and relative optic cup to disc area were independent predictors of C4MTD and C4MPD. CONCLUSION: Foveal function distal to the ganglion cell layer and optic disc cupping independently predict central visual field function in glaucoma.  相似文献   

10.
PURPOSE: To assess the potential of a clinical method of optic disc measurement in the detection of early neuroretinal rim loss in glaucoma. METHODS: A method of disc biometry based on indirect ophthalmoscopy was used to estimate disc and neuroretinal rim areas in 81 ocular hypertensive eyes of 43 patients and in 28 fellow eyes with normal visual fields of patients with unilateral visual field loss from primary open-angle glaucoma. The results were compared with those from age-matched visually normal patients. RESULTS: Neuroretinal rim area was significantly smaller in both hypertensive and fellow eye groups compared with controls (P < 0.0001; P = 0.0009). Disc area also was smaller in both groups (P = 0.0034; P = 0.046); however, this was inadequate to explain the differences in rim area, which, when corrected for disc size, were still highly significant (P < 0.0001; P = 0.0001). CONCLUSION: The differences in neuroretinal rim area observed are likely to indicate that a proportion of the eyes studied had suffered a reduction of neuroretinal rim area, which was measurable by this method at a stage before the development of demonstrable visual field loss.  相似文献   

11.
PURPOSE: The purpose of this retrospective study is to compare the measurements of intrapapillary and peripapillary parameters between two observers and test the usefulness of measuring different types of crescents. METHODS: Optic disc photographs of 23 eyes of 23 patients with glaucoma and 23 age-matched normal eyes were measured in Oulu and in Erlangen using manual planimetric techniques. The authors measured the following magnification corrected intrapapillary and peripapillary areas: optic disc, neuroretinal rim, cup: disc area ratio, scleral ring, central (zone beta), and peripheral peripapillary atrophy (zone alpha). Twenty-one patients with glaucoma had a follow-up of 3.2 years (range, 1.1-4.7 years), and follow-up for 19 control eyes was 3.7 years (range, 2.5-5.9 years). The measurements were performed in a masked fashion for the diagnosis and temporal sequence of the photographs. RESULTS: Central peripapillary atrophy (zone beta) was statistically significantly largest in primary open-angle glaucoma in both centers (Oulu, P=0.003; Erlangen, P=0.004), whereas normal and exfoliative eyes did not differ significantly from each other. The results for peripheral peripapillary atrophy (zone alpha) and scleral ring were less consistent. Despite statistically significant interobserver correlations ranging from r=0.30 (scleral ring area; P=0.0472) to r=0.97 (optic disc area; P=0.0001), the means of all parameters, except for zone alpha and beta, differed statistically significantly between the two observers. CONCLUSIONS: The central peripapillary atrophy, or zone beta, is the most reproducible parameter when measuring peripapillary atrophy in glaucoma. Nonetheless, its measurement is of limited usefulness in the recognition of glaucoma or progression of glaucomatous nerve damage.  相似文献   

12.
AIMS: To determine the age related changes in optic nerve head structure in a group of normal subjects and assess the significance of any changes in relation to those found in open angle glaucoma. METHODS: A group of 88 white volunteers and friends and spouses of patients with a normal visual field and normal intraocular pressure was studied. Two different imaging and measurement devices were used (computer assisted planimetry and scanning laser ophthalmoscopy), and the results from each were compared. Measurements were made of the optic disc, optic cup, and neuroretinal rim areas, and the vertical optic disc diameter and cup/disc diameter ratio. RESULTS: Neuroretinal rim area declined at the rate of between 0.28% and 0.39% per year. Vertical optic cup diameter and optic cup area increased with age. The mean cup/disc diameter ratio increased by about 0.1 between the ages of 30 and 70 years. CONCLUSIONS: Age related changes are significant and measurable, and should be taken into account when assessing the glaucoma suspect, and when estimating the rate of progression of glaucomatous optic neuropathy in patients with established disease.  相似文献   

13.
OBJECTIVE: To determine whether parapapillary chorioretinal atrophy in patients with ocular hypertension remained stationary or progressed along with glaucomatous optic nerve damage. METHODS: The morphometric parameters and progression of parapapillary atrophy were retrospectively investigated, using serial photographs, in 350 eyes of 175 patients with ocular hypertension. The association of parapapillary atrophy progression with subsequent glaucomatous conversion and with other baseline patient- and eye-specific characteristics was analyzed. RESULTS: Progression in the area and extension of parapapillary atrophy before noticeable optic disc or visual field changes was observed in 48 (49.0%) of 98 eyes that converted to glaucoma, while parapapillary atrophy progression was noted in 25 (9.9%) of 252 ocular hypertensive eyes that did not develop glaucomatous damage (P<.001). The predictive sensitivity and specificity of this observation were 49% and 90%, respectively. In a logistic multiple regression model, the progression of parapapillary atrophy was associated with a family history of glaucoma (odds ratio, 2.7) and the initial size of zone beta (odds ratio, 1.64, for an increase of 0.10 of the zone beta area-disc area ratio). CONCLUSION: The progression of parapapillary chorioretinal atrophy may be an early glaucomatous finding in some patients with ocular hypertension.  相似文献   

14.
A Tuulonen  J Lehtola  PJ Airaksinen 《Canadian Metallurgical Quarterly》1993,100(5):587-97; discussion 597-8
PURPOSE: When the optic disc has normal appearance with no abnormalities in routine automated perimetry, the subject is not considered to have glaucoma. The purpose of this study is to show how such patients may have localized retinal nerve fiber layer defects with corresponding functional abnormality. METHODS: The authors selected eight eyes of eight patients who had a localized retinal nerve fiber layer defect extending within a few degrees from fovea but in whom the optic disc appearance and Humphrey 30-2 visual fields were normal. Of the eight patients, three had positive family history of glaucoma, two had suspected retinal nerve fiber layer abnormality in routine eye examination, two had increased intraocular pressure (IOP), and one had advanced low-tension glaucoma in one eye with a normal fellow eye. The authors examined the central 10 degrees visual field with 1 degree resolution using Humphrey perimeter and the Ring and Centring programs of the high-pass resolution perimeter. RESULTS: A central field defect corresponding to retinal nerve fiber layer defect was found in six of eight patients: in both 10 degrees Humphrey field and Centring programs (2 eyes), in Humphrey only (2 eyes), and in Centring only (2 eyes). CONCLUSION: The results indicate that retinal nerve fiber layer photographs are helpful in diagnosing glaucoma because early glaucomatous abnormalities cannot be excluded without nerve fiber layer photography. Currently available routine perimetric examination programs do not always detect very early functional damage.  相似文献   

15.
PURPOSE: Since the glaucomatous loss of nerve fibers changes the appearance of the optic disc, we evaluated the morphology of the surface of the optic disc in normal and glaucomatous eyes by using a computerized system to provide the reciprocal position of a large number of points placed on its surface in order to study the clinical significance of differences in the 'smoothness' of optic disc surface. METHODS: The morphology of the optic disc surface was evaluated by means of simultaneous stereoscopic videographic pictures (IMAGEnet X Rev-3.51b-Topcon Europe, The Netherlands): the reciprocal distribution of a large number of points located on the surface of one eye of 100 subjects randomly chosen (45 normal and 55 glaucoma patients) was studied. In order to define the level of 'smoothness' of the optic disc surface, the differences of the relative position of each surface point were studied by measuring the standard deviation (SD) from the average heights of the points (n. ranging from 623 to 1916 depending on the size of the disc area) that identify the optic disc surface. RESULTS: The coefficient of variation of the reciprocal location of the points, placed on the optic disc surface at the different measurements performed by a single operator was 10.4%. The differences in Optic Disc Surface Smoothness (ODSS) between glaucoma and normal group were statistically significant (p < 0.0001 using Mann-Whitney U test). No correlation was detectable between age and standard deviation. The best threshold value, calculated using ROC methodology, able to separate the two groups was: normal group: SD < or = 17.79 (-1 x 10(-2) mm); glaucoma group: SD > -17.79 (-1 x 10(-2) mm). Such threshold value had a sensitivity of 82.1%, a specificity of 92.2% and a diagnostic precision (DP) of 86.5% in dividing the glaucoma group from the normal group. CONCLUSION: ODSS is a global index of optic disc conditions based on quantitative measurements of the morphology of the optic disc surface. As such it does not provide information about the location and the characteristics of optic disc damage. Nevertheless, ODSS measurement is able to separate normal from glaucomatous optic disc with a rather interesting sensitivity, specificity and diagnostic precision (DP). As such it could be useful both for research and clinical applications.  相似文献   

16.
OBJECTIVE: To determine the incidence of positive neuroradiologic studies in consecutive patients with glaucoma associated with normal intraocular pressure and to compare the psychophysical and clinical characteristics of these eyes with eyes with disc cupping associated with intracranial masses. DESIGN: Retrospective case-controlled study. PARTICIPANTS: Fifty-two eyes of 29 patients with glaucoma associated with normal intraocular pressure and 44 eyes of 28 control patients with compressive lesions were reviewed. INTERVENTION: The medical records of consecutive glaucoma patients with normal intraocular pressure who underwent brain magnetic resonance imaging or computed tomography scanning as part of a diagnostic evaluation between January 1, 1985, and July 1, 1995, were reviewed. A masked reading of optic nerve photographs and visual fields was performed by one observer. A similar analysis was performed on a control group of consecutive patients with nonglaucomatous optic nerve cupping with known intracranial mass lesions. MAIN OUTCOME MEASURES: The neuroradiologic findings, clinical characteristics, optic nerve head appearance, and patterns of visual field loss were compared between groups. RESULTS: None of the patients diagnosed with glaucoma had neuroradiologic evidence of a mass lesion involving the anterior visual pathway. Compared to control subjects, patients with glaucoma were older (P = 0.0001), had better visual acuity (P = 0.002), greater vertical loss of neuroretinal rim tissue (P = 0.0001), more frequent optic disc hemorrhages (P = 0.01), less neuroretinal rim pallor (P = 0.0001), and more nerve fiber bundle visual field defects aligned at the horizontal midline (P = 0.0001). Visual acuity less than 20/40, vertically aligned visual field defects, optic nerve pallor in excess of cupping, and age younger than 50 years were 77%, 81%, 90%, and 93% specific for nonglaucomatous cupping associated with compressive lesions, respectively. CONCLUSIONS: Anterior visual pathway compression is an uncommon finding in the neuroradiologic evaluation of patients with a presumptive diagnosis of normal-tension glaucoma. Younger age, lower levels of visual acuity, vertically aligned visual field defects, and neuroretinal rim pallor may increase the likelihood of identifying an intracranial mass lesion.  相似文献   

17.
PURPOSE: To examine acquired pit of the optic nerve as a risk factor for progression of glaucoma. METHODS: In a retrospective longitudinal study, 25 open-angle glaucoma patients with acquired pit of the optic nerve were compared with a group of 24 open-angle glaucoma patients without acquired pit of the optic nerve. The patients were matched for age, mean intraocular pressure, baseline ratio of neuroretinal rim area to disk area, visual field damage, and duration of follow-up. Serial optic disk photographs and visual fields of both groups were evaluated by three independent observers for glaucomatous progression. RESULTS: Of 46 acquired pits of the optic nerve in 37 eyes of 25 patients, 36 pits were located inferiorly (76%) and 11 superiorly (24%; P < .001). Progression of optic disk damage occurred in 16 patients (64%) in the group with acquired pit and in three patients (12.5%) in the group without acquired pit (P < .001). Progression of visual field loss occurred in 14 patients (56%) in the group with acquired pit and in six (25%) in the group without pit (P=.04). Bilateral acquired pit of the optic nerve was present in 12 patients (48%). Disk hemorrhages were observed more frequently in the group with acquired pit (10 eyes, 40%) compared with the group without pit (two eyes, 8%; P=.02). CONCLUSION: Among patients with glaucoma, patients with acquired pit of the optic nerve represent a subgroup who are at increased risk for progressive optic disk damage and visual field loss.  相似文献   

18.
BACKGROUND: Detailed fluorescein angiographic findings in the disc circumference may be useful for evaluating the possible relation of the circumference to glaucomatous nerve damage. METHODS: Fluorescein angiograms of 25 eyes of 25 subjects with primary open angle glaucoma were observed after they had undertaken Octopus perimetry. Based on the retinotopic projection, disc sectors and corresponding visual field regions were set. RESULTS: Twenty three eyes (92%) showed a zone of no fluorescence around the disc (non-fluorescent zone). Of these, the zone width of the 20 eyes that had visible ciliary vessels within the zone was wider than that of the other three eyes, and showed fluorescein diffusion from the outer boundary of the zone towards the disc. The diffusion reached the disc if the zone was narrow. In those 20 eyes, a standardised difference in the zone width of inferior temporal sector minus superior temporal sector correlated with the difference in mean loss of corresponding visual field regions (r = 0.48, p = 0.0312). CONCLUSION: The visible ciliary vessels suggest the absence of the choriocapillaris in the non-fluorescent zone, the width of which correlated with the visual field defect and may affect the amount of the fluorescein diffusion to the disc. This suggests that the diffusion might be related to optic nerve damage in glaucoma.  相似文献   

19.
BACKGROUND: This study evaluated the ability of laser scanning tomography to distinguish between normal and glaucomatous optic nerve heads, and between glaucomatous subjects with and without field loss. METHODS: 57 subjects were classified into three diagnostic groups: subjects with elevated intraocular pressure, normal optic nerve heads, and normal visual fields (n = 10); subjects with glaucomatous optic neuropathy and normal visual fields (n = 30); and subjects with glaucomatous optic neuropathy and repeatable visual field abnormality (n = 17). Three 10 degrees image series were acquired on each subject using the Heidelberg retina tomograph (HRT). From the 14 HRT stereometric variables, three were selected a priori for evaluation: (1) volume above reference (neuroretinal rim volume), (2) third moment in contour (cup shape), and (3) height variation contour (variation in relative nerve fibre layer height at the disc margin). Data were analysed using analysis of covariance, with age as the covariate. RESULTS: Volume above reference, third moment in contour, and mean height contour were significantly different between each of the three diagnostic groups (p < 0.001). Height variation contour showed no significant difference among the three diagnostic groups (p = 0.906). CONCLUSIONS: The HRT variables measuring rim volume, cup shape, and mean nerve fibre layer height distinguished between (1) subjects with elevated intraocular pressures and normal nerve heads, and glaucomatous optic nerve heads, and (2) glaucomatous optic nerve heads with and without repeatable visual field abnormality. This study did not directly assess the ability of the HRT to identify patients at risk of developing glaucoma. It is hypothesised that the greatest potential benefit of laser scanning tomography will be in the documentation of change within an individual over time.  相似文献   

20.
PURPOSE: The authors evaluated the ability of a confocal scanning laser ophthalmoscope to detect glaucomatous visual field loss by using their previously described discriminant formula on a prospectively obtained cohort. The relationship of optic disc size to diagnostic classification was also evaluated. METHODS: One eye was chosen randomly from each of 153 subjects. Sixty control eyes had intraocular pressure less than 21 mmHg and normal visual fields; 93 glaucomatous eyes had intraocular pressure greater than 21 mmHg and abnormal visual fields. The optic disc status purposely was not used for classification purposes. All subjects were examined with the Heidelberg Retina Tomograph (HRT; Heidelberg Engineering GMBH, Heidelberg, Germany) and Humphrey Perimeter, program 30-2 (Humphrey Instruments, Inc., San Leandro, CA). Visual fields were considered abnormal by the authors' previously published criteria. The HRT classification used age, adjusted cup shape measure, rim volume, and height variation contour to classify the optic disc as normal or glaucomatous. Then the authors assessed the sensitivity, specificity, and diagnostic precision for the entire group, and for three subsets classified by disc area: disc area less than 2 mm2, between 2 and 3 mm2, and more than 3 mm2. RESULTS: The entire group had a sensitivity, specificity, and diagnostic precision of 74%, 88%, and 80%, respectively. The specificity was 83% when disc area was less than 2 mm2 and improved to 89% when disc area was more than 2 mm2. The sensitivity tended to improve from 65% to 79%, and to 83% if the disc area increased, but the difference was not statistically significant. CONCLUSIONS: In a prospective cohort of patients, the HRT discriminant analysis formula was capable of detecting glaucomatous visual field loss with good precision. Unusually small optic discs continue to present diagnostic difficulties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号